Asl, F. M., and Ulsoy, A. G., 2003, “Analysis of a System of Linear Delay Differential Equations,” ASME J. Dyn. Syst., Meas., Control, 125 (2), pp. 215–223.

[CrossRef]Fazelinia, H., Sipahi, R., and Olgac, N., 2007, “Stability Robustness Analysis of Multiple Time-Delayed Systems Using “Building Block” Concept,” IEEE Trans. Autom. Control, 52 , pp. 799–810.

[CrossRef]Olgac, N., Ergenc, A. F., and Sipahi, R., 2005, “Delay Scheduling: A New Concept for Stabilization in Multiple Delay Systems,” J. Vib. Control, 11 , pp. 1159–1172.

[CrossRef]Olgac, N., and Sipahi, R., 2002, “An Exact Method for the Stability Analysis of Time Delayed LTI Systems,” IEEE Trans. Autom. Control, 47 , pp. 793–797.

[CrossRef]Olgac, N., and Sipahi, R., 2004, “A Practical Method for Analyzing the Stability of Neutral Type LTI-Time Delayed Systems,” Automatica, 40 , pp. 847–853.

[CrossRef]Olgac, N., and Sipahi, R., 2005, “The Cluster Treatment of Characteristic Roots and the Neutral Type Time-Delayed Systems,” ASME J. Dyn. Syst., Meas., Control, 127 , pp. 88–97.

[CrossRef]Olgac, N., Sipahi, R., and Ergenc, A. F., 2007, “Delay Scheduling, an Unconventional Use of Time Delay for Trajectory Tracking,” Mechatronics, 17 , pp. 199–206.

[CrossRef]Sipahi, R., and Olgac, N., 2006, “A Unique Methodology for the Stability Robustness of Multiple Time Delay Systems,” Syst. Control Lett., 55 , pp. 819–825.

[CrossRef]Sipahi, R., and Olgac, N., 2006, “Stability Robustness of Retarded LTI Systems With Single Delay and Exhaustive Determination of Their Imaginary Spectra,” SIAM J. Control Optim., 45 , pp. 1680–1696.

[CrossRef]Sipahi, R., and Olgac, N., 2006, “Complete Stability Analysis of Neutral-Type First Order Two-Time-Delay Systems With Cross-Talking Delays,” SIAM J. Control Optim., 45 , pp. 957–971.

[CrossRef]Yi, S., Nelson, P. W., and Ulsoy, A. G., 2007, “Survey on Analysis of Time Delayed Systems via the Lambert W Function,” Dyn. Contin. Discrete Impulsive Syst.: Ser. A - Math. Anal., 14 (S2), pp. 296–301.

Yi, S., Nelson, P. W., and Ulsoy, A. G., 2008, “Controllability and Observability of Systems of Linear Delay Differential Equations via the Matrix Lambert W Function,” IEEE Trans. Autom. Control, 53 , pp. 854–860.

[CrossRef]Yi, S., Nelson, P. W., and Ulsoy, A. G., 2010, “Eigenvalue Assignment via the Lambert W Function for Control of Time Delayed Systems,” J. Vib. Control, in press.

[CrossRef]Yi, S., Nelson, P. W., and Ulsoy, A. G., “Robust Control and Time-Domain Specifications for Systems for Delay Differential Equations via Eigenvalue Assignment,” American Control Conference , 2008.

Smith, O. J. M., 1959, “A Controller to Overcome Dead Time,” ISA, 6 , pp. 28–33.

Artstein, Z., 1982, “Linear Systems With Delayed Controls: A Reduction,” IEEE Trans. Autom. Control, 27 , pp. 869–879.

[CrossRef]Evesque, S., Annaswamy, A. M., Niculescu, S., and Dowling, A. P., 2003, “Adaptive Control of a Class of Time-Delay Systems,” ASME J. Dyn. Syst., Meas., Control, 125 , pp. 186–193.

[CrossRef]Fiagbedzi, Y. A., and Pearson, A. E., 1986, “Feedback Stabilization of Linear Autonomous Time Lag Systems,” IEEE Trans. Autom. Control, 31 , pp. 847–855.

[CrossRef]Gu, K., and Niculescu, S. -I., 2003, “Survey on Recent Results in the Stability and Control of Time-Delay Systems,” Transactions of ASME, 125 , pp. 158–165.

[CrossRef]Jankovic, M., 2006, “Forwarding, Backstepping, and Finite Spectrum Assignment for Time Delay Systems,” American Control Conference .

Jankovic, M., 2007, “Control of Cascade Systems With Time Delay—The Integral Cross-Term Approach,” IEEE Conference on Decision and Control .

Jankovic, M., 2008, “Recursive Predictor Design for Linear Systems With Time Delay,” American Control Conference .

Klamka, J., 1982, “Observer for Linear Feedback Control of Systems With Distributed Delays in Controls and Outputs,” Syst. Control Lett., 1 , pp. 326–331.

[CrossRef]Krstic, M., 2008, “Lyapunov Tools for Predictor Feedbacks for Delay Systems: Inverse Optimality and Robustness to Delay Mismatch,” Automatica, 44 , pp. 2930–2935.

[CrossRef]Krstic, M., 2008, “On Compensating Long Actuator Delays in Nonlinear Control,” IEEE Trans. Autom. Control, 53 , pp. 1684–1688.

[CrossRef]Krstic, M., and Smyshlyaev, A., 2008, “Backstepping Boundary Control for First Order Hyperbolic PDEs and Application to Systems With Actuator and Sensor Delays,” Syst. Control Lett., 57 , pp. 750–758.

[CrossRef]Kwon, W. H., and Pearson, A. E., 1980, “Feedback Stabilization of Linear Systems With Delayed Control,” IEEE Trans. Autom. Control, 25 , pp. 266–269.

[CrossRef]Manitius, A., and Olbrot, A., 1979, “Finite Spectrum Assignment Problem for Systems With Delays,” IEEE Trans. Autom. Control, 24 , pp. 541–552.

[CrossRef]Michiels, W., and Niculescu, S. -I., 2003, “On the Delay Sensitivity of Smith Predictors,” Int. J. Syst. Sci., 34 , pp. 543–551.

[CrossRef]Michiels, W., and Niculescu, S. -I., 2007, "

*Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach*", SIAM, Philadelphia.

[CrossRef]Mirkin, L., 2004, “On the Approximation of Distributed-Delay Control Laws,” Syst. Control Lett., 51 , pp. 331–342.

[CrossRef]Mondie, S., and Michiels, W., 2003, “Finite Spectrum Assignment of Unstable Time-Delay Systems With a Safe Implementation,” IEEE Trans. Autom. Control, 48 , pp. 2207–2212.

[CrossRef]Niculescu, S. -I., and Annaswamy, A. M., 2003, “An Adaptive Smith-Controller for Time-Delay Systems With Relative Degree n∗≥2,” Syst. Control Lett., 49 , pp. 347–358.

[CrossRef]Olbrot, A. W., 1978, “Stabilizability, Detectability, and Spectrum Assignment for Linear Autonomous Systems With General Time Delays,” IEEE Trans. Autom. Control, 23 , pp. 887–890.

[CrossRef]Richard, J. -P., 2003, “Time-Delay Systems: An Overview of Some Recent Advances and Open Problems,” Automatica, 39 , pp. 1667–1694.

[CrossRef]Tadmor, G., 2000, “The Standard H∞ Problem in Systems With a Single Input Delay,” IEEE Trans. Autom. Control, 45 , pp. 382–397.

[CrossRef]Watanabe, K., 1986, “Finite Spectrum Assignment and Observer for Multivariable Systems With Commensurate Delays,” IEEE Trans. Autom. Control, 31 , pp. 543–550.

[CrossRef]Watanabe, K., and Ito, M., 1981, “An Observer for Linear Feedback Control Laws of Multivariable Systems With Multiple Delays in Controls and Outputs,” Syst. Control Lett., 1 , pp. 54–59.

[CrossRef]Zaccarian, L., and Nesic, D., “A Cascade Interpretation of the Smith Predictor and the Arising Enhanced Scheme,” American Control Conference , 2006.

Zhong, Q. -C., 2004, “On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementation,” IEEE Trans. Autom. Control, 49 , pp. 2074–2080.

[CrossRef]Zhong, Q. -C., 2006, "*Robust Control of Time-Delay Systems*", Springer, New York.

Zhong, Q. -C., and Mirkin, L., 2002, “Control of Integral Processes With Dead Time—Part 2: Quantitative Analysis,” IEE Proc.: Control Theory Appl., 149 , pp. 291–296.

[CrossRef]Datko, R., Lagnese, J., and Polis, M. P., 1986, “An Example on the Effect of Time Delays in Boundary Feedback Stabilization of Wave Equations,” SIAM J. Control Optim., 24 , pp. 152–156.

[CrossRef]Datko, R., 1988, “Not All Feedback Stabilized Hyperbolic Systems Are Robust With Respect to Small Time Delays in Their Feedbacks,” SIAM J. Control Optim., 26 , pp. 697–713.

[CrossRef]Guo, B. Z., and Xu, C. Z., 2007, Boundary Stabilization of a One-Dimensional Wave Equation With Time Delay, Academy of Mathematics, Academia Sinica, preprint.

Guo, B. -Z., and Yang, K. -Y., 2009, “Dynamic Stabilization of an Euler–Bernoulli Beam Equation With Boundary Observation Time Delay,” Automatica, 45 , pp. 1468–1475.

[CrossRef]Chen, G., 1979, “Energy Decay Estimates and Exact Boundary Value Controllability for the Wave Equation in a Bounded Domain,” J. Math. Pures Appl., 58 , pp. 249–273.

Guo, B. Z., and Xu, C. Z., 2007, “The Stabilization of a One-Dimensional Wave Equation by Boundary Feedback With Non-Collocated Observation,” IEEE Trans. Autom. Control, 52 , pp. 371–377.

[CrossRef]Krstic, M., Guo, B. -J., Balogh, A., and Smyshlyaev, A., 2008, “Output-Feedback Stabilization of an Unstable Wave Equation,” Automatica, 44 , pp. 63–74.

[CrossRef]Luo, Z. -H., Guo, B. -Z., and Morgul, O., 1998, "*Stability and Stabilization of Infinite Dimensional Systems With Applications*", Springer, New York.

Dadfarnia, M., Jalili, N., Xian, B., and Dawson, D. M., 2004, “Lyapunov-Based Vibration Control of Translational Euler–Bernoulli Beams Using the Stabilizing Effect of Beam Damping Mechanisms,” J. Vib. Control, 10 , pp. 933–961.

[CrossRef]de Queiroz, M. S., Dawson, D. M., Agarwal, M., and Zhang, F., 1999, “Adaptive Nonlinear Boundary Control of a Flexible Link Robot Arm,” IEEE Trans. Rob. Autom., 15 (4), pp. 779–787.

[CrossRef]de Queiroz, M. S., and Rahn, C. D., 2002, “Boundary Control of Vibration and Noise in Distributed Parameter Systems: An Overview,” Mech. Syst. Signal Process., 16 , pp. 19–38.

[CrossRef]Zhang, F., Dawson, D. M., de Queiroz, M. S., and Vedagarbha, P., “Boundary Control of the Timoshenko Beam With Free-End Mass/Inertia,” IEEE Conference on Decision and Control , 1997.

Krstic, M., 2009, “Control of an Unstable Reaction-Diffusion PDE With Long Input Delay,” Syst. Control Lett., 58 , pp. 773–782.

[CrossRef]Krstic, M., and Smyshlyaev, A., 2008, "*Boundary Control of PDEs: A Course on Backstepping Designs*", SIAM, Philadelphia.

Meurer, T., and Kugi, A., 2009, “Tracking Control for Boundary Controlled Parabolic PDEs With Varying Parameters: Combining Backstepping and Differential Flatness,” Automatica, 45 , pp. 1182–1194.

[CrossRef]Smyshlyaev, A., and Krstic, M., 2009, “Boundary Control of an Unstable Wave Equation With Anti-Damping on the Uncontrolled Boundary,” Syst. Control Lett., 58 , pp. 617–623.

[CrossRef]Krstic, M., 2009, “Compensating a String PDE in the Actuation or Sensing Path of an Unstable ODE,” IEEE Trans. Autom. Control, 54 , pp. 1362–1368.

[CrossRef]Krstic, M., 2009, “Adaptive Control of an Anti-Stable Wave PDE,” 2009 American Control Conference .

Annaswamy, A., and Ghoniem, A., 1995, “Active Control in Combustion Systems,” IEEE Control Syst. Mag., 15 , pp. 49–63.

[CrossRef]Banaszuk, A., Ariyur, K. B., Krstic, M., and Jacobson, C. A., 2004, “An Adaptive Algorithm for Control of Combustion Instability,” Automatica, 14 , pp. 1965–1972.

Krstic, M., and Banaszuk, A., 2006, “Multivariable Adaptive Control of Instabilities Arising in Jet Engines,” Control Eng. Pract., 14 , pp. 833–842.

[CrossRef]Krstic, M., Krupadanam, A. S., and Jacobson, C. A., 1999, “Self-Tuning Control of a Nonlinear Model of Combustion Instabilities,” IEEE Trans. Control Syst. Technol., 7 , pp. 424–436.

[CrossRef]Aksikas, I., Fuxman, A., Forbes, J. F., and Winkin, J. J., 2009, “LQ Control Design of a Class of Hyperbolic PDE Systems: Application to Fixed-Bed Reactor,” Automatica, 45 , pp. 1542–1548.

[CrossRef]Sano, H., 2003, “Exponential Stability of a Mono-Tubular Heat Exchanger Equation With Output Feedback,” Syst. Control Lett., 50 , pp. 363–369.

[CrossRef]Bresch-Pietri, D., and Krstic, M., 2009, “Adaptive Trajectory Tracking Despite Unknown Input Delay and Plant Parameters,” Automatica, 45 , pp. 2074–2081.

[CrossRef]Smyshlyaev, A., and Krstic, M., 2004, “Closed Form Boundary State Feedbacks for a Class of 1D Partial Integro-Differential Equations,” IEEE Trans. Autom. Control, 49 (12), pp. 2185–2202.

[CrossRef]Smyshlyaev, A., and Krstic, M., 2005, “Backstepping Observers for a Class of Parabolic PDEs,” Syst. Control Lett., 54 , pp. 613–625.

[CrossRef]