Sommerfeld, A., 1902, “Beiträge Zum Dynamischen Ausbau Der Festigkeitslehe,” Phys. Z., 3 , pp. 266–286.

Timoshenko, S., 1961, "*Vibration Problems in Engineering*", Van Nostrand, Princeton, NJ.

Kononenko, V. O., 1964, "*Vibrating Systems With Limited Excitation*", Nauka, Moscow, Russia.

Blekhman, I. I., 2000, "

*Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications*", World Scientific, Singapore.

[CrossRef]Alifov, A. A., and Frolov, K. V., 1990, "*Interaction of Non-Linear Oscillatory Systems With Energy Sources*", Taylor & Francis, London, UK.

Nayfeh, A., and Mook, D., 1979, "*Nonlinear Oscillations*", Wiley-Interscience, New York.

Eckert, M., 1996, “The Sommerfeld Effect: Theory and History of a Remarkable Resonance Phenomenon,” Eur. J. Phys., 17 (5), pp. 285–289.

[CrossRef]Ryzhik, A., Amer, T., Duckstein, H., and Sperling, L., 2001, “Zum Sommerfeldeffect beim selbsttätigen Auswuchten in einer Ebene,” Technische Mechanik, 21 (4), pp. 297–312.

Felix, J. L. P., and Balthazar, J. M., 2009, “Comments on a Nonlinear and Nonideal Electromechanical Damping Vibration Absorber, Sommerfeld Effect, and Energy Transfer,” Nonlinear Dyn., 55 (1–2), pp. 1–11.

[CrossRef]Bolla, M. R., Balthazar, J. M., Felix, J. L. P., and Mook, D. T., 2007, “On an Approximate Analytical Solution to a Nonlinear Vibrating Problem, Excited by a Nonideal Motor,” Nonlinear Dyn., 50 (4), pp. 841–847.

[CrossRef]Balthazar, J. M., Mook, D. T., Weber, H. I., Brasil, R. M. L. R. F., Fenili, A., Belato, D., and Felix, J. L. P., 2003, “An Overview on Non-Ideal Vibrations,” Meccanica, 38 , pp. 613–621.

[CrossRef]Balthazar, J. M., Mook, D. T., Brasil, R. M. L. R. F., Fenili, A., Belato, D., Felix, J. L. P., and Weber, H. I., 2002, “Recent Results on Vibrating Problems With Limited Power Supply,” Meccanica, 330 (7), pp. 1–9.

Dimentberg, M. F., McGovern, L., Norton, R. L., Chapdelaine, J., and Harrison, R., 1997, “Dynamics of an Unbalanced Shaft Interacting With a Limited Power Supply,” Nonlinear Dyn., 13 , pp. 171–187.

[CrossRef]Zukovic, M., and Cveticanin, L., 2007, “Chaotic Responses in a Stable Duffing System of Non-Ideal Type,” J. Vib. Control, 13 (6), pp. 751–767.

[CrossRef]Evan-Iwanowski, R. M., 1976, "*Resonance Oscillators in Mechanical Systems*", Elsevier, London, UK.

Olver, P. J., 1995, "

*Equivalence, Invariants, and Symmetry*", Cambridge University Press, Cambridge, UK.

[CrossRef]Karnopp, D. C., Margolis, D. L., and Rosenberg, R. C., 2006, "*System Dynamics: Modeling and Simulation of Mechatronic Systems*", Wiley, New York.

Mukherjee, A., Karmakar, R., and Samantaray, A. K., 2006, "*Bond Graph in Modeling, Simulation, and Fault Identification*", CRC, Boca Raton, FL.

Borutzky, W., 2004, "*Bond Graphs—A Methodology for Modelling Multidisciplinary Dynamic Systems*", SCS, San Diego, CA.

Samantaray, A. K., and Ould Bouamama, B., 2008, "*Model-Based Process Supervision: A Bond Graph Approach*", Springer, London, UK.

Dauphin-Tanguy, G., 2000, "*Les Bond Graphs*", Hermes Science Europe, Paris, France.

Samantaray, A. K., Mukherjee, A., and Bhattacharyya, R., 2006, “Some Studies on Rotors With Polynomial Type Nonlinear External and Internal Damping,” Int. J. Non-Linear Mech., 41 , pp. 1007–1015.

[CrossRef]Rastogi, V., 2005, “Extension of Lagrangian–Hamiltonian Mechanics for Finite Systems,” Ph.D. thesis, IIT Kharagpur, India.

Mukherjee, A., Rastogi, V., and Dasgupta, A., 2009, “Extension of Lagrangian–Hamiltonian Mechanics for Continuous Systems—Investigation of Dynamics of a One-Dimensional Internally Damped Rotor Driven Through a Dissipative Coupling,” Nonlinear Dyn., 58 (1–2), pp. 107–127.

[CrossRef]Genin, J., 1966, “Effect of Nonlinear Material Damping on Whirling Shafts,” Flow, Turbul. Combust., 15 (1), pp. 1–11.

Genin, J., and Maybee, J. S., 1969, “Stability in Three Dimensional Whirling Problem,” Int. J. Non-Linear Mech., 4 , pp. 205–215.

[CrossRef]Genin, J., and Maybee, J. S., 1970, “External and Material Damped Three Dimensional Rotor System,” Int. J. Non-Linear Mech., 5 , pp. 281–291.

Margolis, D. L., 1978, “Bond Graphs and the Exploitation of Power Conserving Transformations,” Comput. Programs Biomed., 8 (3–4), pp. 165–170.

[CrossRef]Karnopp, D., 1969, “Power-Conserving Transformations: Physical Interpretations and Applications Using Bond Graphs,” J. Franklin Inst., 288 (3), pp. 175–201.

[CrossRef]Pedersen, P. T., 1973, “On Self-Excited Whirl of Rotors,” Ing.-Arch., 42 , pp. 267–284.

[CrossRef]Chang, C. O., and Cheng, J. W., 1993, “Non-Linear Dynamics and Instability of a Rotating Shaft-Disk System,” J. Sound Vib., 160 (3), pp. 433–454.

[CrossRef]Ngwompo, R. F., and Scavarda, S., 1999, “Dimensioning Problems in System Design Using Bicausal Bond Graphs,” Simulation Practice and Theory, 7 (5–6), pp. 577–587.

[CrossRef]Gawthrop, P. J., 2000, “Physical Interpretation of Inverse Dynamics Using Bicausal Bond Graphs,” J. Franklin Inst., 337 (6), pp. 743–769.

[CrossRef]Merzouki, R., Medjaher, K., Djeziri, M. A., and Ould-Bouamama, B., 2007, “Backlash Fault Detection in Mechatronic System,” Mechatronics, 17 (6), pp. 299–310.

[CrossRef]Ben-Tal, A., 2002, “Symmetry Restoration in a Class of Forced Oscillators,” Physica D, 171 , pp. 236–248.

[CrossRef]Samantaray, A. K., Dasgupta, S. S., and Bhattacharyya, R., 2010, “Sommerfeld Effect in Rotationally Symmetric Planar Dynamical Systems,” Int. J. Eng. Sci., 48 (1), pp. 21–36.

[CrossRef]Baltanás, J. P., Trueba, J. L., and Sanjuán, M. A. F., 2001, “Energy Dissipation in a Nonlinearly Damped Duffing Oscillator,” Physica D, 159 , pp. 22–34.

[CrossRef]Samantaray, A. K., 2008, “A Note on Internal Damping Induced Self-Excited Vibration in a Rotor by Considering Source Loading of a DC Motor Drive,” Int. J. Non-Linear Mech., 43 (9), pp. 1012–1017.

[CrossRef]Samantaray, A. K., 2009, “Steady State Dynamics of a Non-Ideal Rotor With Internal Damping and Gyroscopic Effects,” Nonlinear Dyn., 56 (4), pp. 443–451.

[CrossRef]Samantaray, A. K., 2009, “On the Non-Linear Phenomena Due to Source Loading in Rotor-Motor Systems,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 223 (4), pp. 809–818.

[CrossRef]Sugiyama, Y., and Langthjem, M. A., 2007, “Physical Mechanism of the Destabilizing Effect of Damping in Continuous Non-Conservative Dissipative Systems,” Int. J. Non-Linear Mech., 42 , pp. 132–145.

[CrossRef]Samantaray, A. K., Bhattacharyya, R., and Mukherjee, A., 2008, “On the Stability of Crandall Gyropendulum,” Phys. Lett. A, 372 , pp. 238–243.

[CrossRef]Samantaray, A. K., Bhattacharyya, R., and Mukherjee, A., 2006, “An Investigation Into the Physics Behind the Stabilizing Effects of Two-Phase Lubricants in Journal Bearings,” J. Vib. Control, 12 (4), pp. 425–442.

[CrossRef]Inman, D. J., 1986, "*Vibration With Control, Measurement, and Stability*", Prentice-Hall, Englewood Cliffs, NJ.

Parszewski, Z. A., Krodkiewski, J. M., and Skoraczynski, J., 1988, “Stability Assessment of Machine Systems Described by Receptance,” J. Sound Vib., 120 (3), pp. 527–538.

[CrossRef]Crandall, S. H., 1995, “The Effect of Damping on the Stability of Gyroscopic Pendulums,” Z. Angew. Math. Phys., 46 , pp. S761–S780.

Bou-Rabee, N. M., Marsden, J. E., and Romero, L. A., 2004, “Tippe Top Inversion as a Dissipation-Induced Instability,” SIAM J. Appl. Dyn. Syst., 3 (3), pp. 352–377.

[CrossRef]Krechetnikov, R., and Marsden, J. E., 2006, “On Destabilizing Effects of Two Fundamental Non-Conservative Forces,” Physica D, 214 , pp. 25–32.

[CrossRef]Bhattacharyya, R., Mukherjee, A., and Samantaray, A. K., 2003, “Harmonic Oscillations of Non-Conservative, Asymmetric, Two-Degree-of-Freedom Systems,” J. Sound Vib., 264 , pp. 973–980.

[CrossRef]Kirillov, O. N., 2007, “Destabilization Paradox Due to Breaking the Hamiltonian and Reversible Symmetry,” Int. J. Non-Linear Mech., 42 , pp. 71–87.

[CrossRef]Filippov, A. P., 1971, "*Vibrations of Mechanical Systems*", National Lending Library for Science and Technology, Boston Spa, Yorkshire, UK.

Umesh Rai, B., and Umanand, L., 2008, “Bond Graph Model of Doubly Fed Three Phase Induction Motor Using the Axis Rotator Element for Frame Transformation,” Simulation Modelling Practice and Theory, 16 (10), pp. 1704–1712.

[CrossRef]Mukherjee, A., Karmakar, R., and Samantaray, A. K., 1999, “Modelling of Basic Induction Motors and Source Loading in Rotor-Motor Systems With Regenerative Force Field,” Simulation Practice and Theory, 7 (5–6), pp. 563–576.

[CrossRef]Kim, J., and Bryant, M. D., 2000, “Bond Graph Model of a Squirrel Cage Induction Motor With Direct Physical Correspondence,” ASME J. Dyn. Syst., Meas., Control, 122 (3), pp. 461–469.

[CrossRef]Karnopp, D., 1991, “State Functions and Bond Graph Dynamic Models for Rotary, Multi-Winding Electrical Machines,” J. Franklin Inst., 328 (1), pp. 45–54.

[CrossRef]Dasgupta, K., Mukherjee, A., and Maiti, R., 1996, “Modeling and Dynamics of Epitrochoid Generated Orbital Rotary Piston LSHT Hydraulic Motor: A Bondgraph Approach,” ASME J. Manuf. Sci. Eng., 118 (3), pp. 415–420.

[CrossRef]Halder, B., Mukherjee, A., and Karmakar, R., 1990, “Theoretical and Experimental Studies on Squeeze Film Stabilizers for Flexible Rotor-Bearing Systems Using Newtonian and Viscoelastic Lubricants,” J. Vib., Acoust., Stress, Reliab. Des., 112 (4), pp. 473–482.

[CrossRef]Yeh, T. -J., and Youcef-Toumi, K., 1994, “Design and Control Integration for Magnetic Bearing Systems. Part I—Modelling and Performance Limitation,” ASME Dyn. Syst. Control Div. Publication DSC 55-2, pp. 939–943.

Bryant, M. D., and Lee, S., 2004, “Resistive Field Bond Graph Models for Hydrodynamically Lubricated Bearings,” Proc. IMechE Part I: Journal of Systems and Control Engineering, 218 (8), pp. 645–654.

[CrossRef]