Lipkin, H., and Duffy, J., 2002, “Sir Robert Stawell Ball and Methodologies of Modern Screw Theory,” Proc. Inst. Mech. Eng., Part C, 216 (1), pp. 1–11.

[CrossRef]Featherstone, R., "*Rigid Body Dynamics Algorithms*" (Springer, New York, 2008).

Kieffer, J., 1994, “Differential Analysis of Bifurcations and Isolated Singularities for Robots and Mechanisms,” IEEE Trans. Rob. Automation, 10 (1), pp. 1–10.

[CrossRef]Lerbet, J., and Hao, K., 1999, “Kinematics of Mechanisms to the Second Order-Application to the Closed Mechanisms,” Acta Appl. Math., 59 (1), pp. 1–20.

[CrossRef]Milenkovic, P., 2010, “Mobility of Single-Loop Kinematic Mechanisms Under Differential Displacement,” ASME J. Mech. Des., 132 , pp. 041001-1–041001-9.

[CrossRef]Milenkovic, P. H., 2010, “Mobility of Multi-Chain Platform Mechanisms Under Differential Displacement,” ASME J. Mech. Rob., 2 , pp. 031004-1–031004-9.

Karger, A., 1996, “Singularity Analysis of Serial Robot-Manipulators,” ASME Jo. Mech. Des., 118 , pp. 520–525.

[CrossRef]Rico, J. M., Gallardo, J., and Duffy, J., 1999, “Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains,” Mech. Mach. Theory, 34 (4), pp. 559–586.

[CrossRef]Cervantes-Sánchez, J. J., Rico-Martínez, J. M., and González-Montiel, G., 2009, “The Differential Calculus of Screws: Theory, Geometrical Interpretation, and Applications,” Proc. Inst. Mech. Eng., Part C, 223 (6), pp. 1449–1468.

[CrossRef]Koetsier, T., 1986, “From Kinematically Generated Curves to Instantaneous Invariants: Episodes in the History of Instantaneous Planar Kinematics,” Mech. Mach. Theory, 21 (6), pp. 489–498.

[CrossRef]Kane, T. R., 1973, “Solution of Kinematical Differential Equations for a Rigid Body,” Trans. ASME, J. Appl. Mech., 4 , pp. 109–113.

[CrossRef]Chou, J. C. K., 2002, “Quaternion Kinematic and Dynamic Differential Equations,” IEEE Trans. Rob. Autom., 8 (1), pp. 53–64.

[CrossRef]Milenkovic, P., 2011, “Series Solution for Finite Displacement of Planar Four-Bar Linkages,” ASME J. Mech. Rob., 3 (1), pp. 014501-1–014501-7.

Milenkovic, P., “Series Solution for Finite Displacement of Single-Loop Spatial Linkages,” Journal of Mechanisms and Robotics (submitted).

Karsai, G., 2001, “Method for the Calculation of the Combined Motion Time Derivatives of Optional Order and Solution for the Inverse Kinematic Problems,” Mech. Mach. Theory, 36 (2), pp. 261–272.

[CrossRef]Schiehlen, W., 1997, “Multibody System Dynamics: Roots and Perspectives,” Multibody Syst. Dyn., 1 (2), pp. 149–188.

[CrossRef]Betsch, P., and Leyendecker, S., 2006, “The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part II: Multibody Dynamics,” Int. J. Numer. Methods Eng., 67 (4), pp. 499–552.

[CrossRef]Waldron, K. J., 1966, “The Constraint Analysis of Mechanisms,” J. Mech., 1 (2), pp. 101–114.

[CrossRef]Tsai, L.W., "*Robot Analysis: The Mechanics of Serial and Parallel Manipulators*" (John Wiley and Sons, New York, 1999).

Sommerfeld, A., and Stern, M. O., "*Mechanics. Lectures on Theoretical Physics*", Volume I (Academic, New York, 1952).

Lanczos, C., "*The Variational Principles of Mechanics*" (University of Toronto, Toronto, 1970).

Betsch, P., 2005, “The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems: Part I: Holonomic Constraints,” Comput. Methods Appl. Mech. Eng., 194 (50–52), pp. 5159–5190.

[CrossRef]Sokolov, A., and Xirouchakis, P., 2007, “Dynamics Analysis of a 3-DOF Parallel Manipulator with RPS Joint Structure,” Mech. Mach. Theory, 42 (5), pp. 541–557.

[CrossRef]Buffinton, K. W., 2005, “Kane’s Method in Robotics,” "*Robotics and Automation Handbook*", T.R.Kurfess, ed., CRC, Boca Raton, FL, Chap. 6, pp. 6-1–6-31.

Negrut, D., Haug, E. J., and German, H. C., 2003, “An Implicit Runge–Kutta Method for Integration of Differential Algebraic Equations of Multibody Dynamics,” Multibody Syst. Dyn., 9 (2), pp. 121–142.

[CrossRef]Blajer, W., 2002, “Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems,” Multibody Syst. Dyn., 7 (3), pp. 265–284.

[CrossRef]Han, H. S., and Seo, J. H., 2004, “Design of a Multi-Body Dynamics Analysis Program using the Object-Oriented Concept,” Adv. Eng. Software, 35 (2), pp. 95–103.

[CrossRef]Clemens, M., 1869, “Improvement in Apparatus for Transmitting Rotary Motion,” U.S. Patent No. 96,395.

Salerno, R. J., Canfield, S. L., and Ganino, A. J., 1995, “Parallel, Four Degree-of-Freedom Robotic Wrist,” "*Proceedings of the 1995 ASME Design Engineering Technical Conferences*", Boston, MA, Vol. 82 , pp. 765–771.

Milenkovic, P., 2011, “Nonsingular Spherically Constrained Clemens Linkage Wrist,” ASME J. Mech. Rob., 3 (1), pp. 011014-1–011014-8.

Cripe, A. R., 1969, “Articulated Car Single Axle Truck,” U.S. Patent No. 3,424,105.

Myard, F. E., 1933, “Les Transmissions De Rotation a Couples D’Emboitement—Application Aux Automobiles,” Le Génie Civ., 102 , pp. 539–541.

Hunt, K. H., 1973, “Constant-Velocity Shaft Couplings: A General Theory,” ASME J. Eng. Ind., 95 , pp. 455–464.

[CrossRef]Lipkin, H., 2005, “Time Derivatives of Screws with Applications to Dynamics and Stiffness,” Mech. Mach. Theory, 40 (3), pp. 259–273.

[CrossRef]Stramigioli, S., and Bruyninckx, H., 2001, “Geometry of Dynamic and Higher-Order Kinematic Screws,” "*Proceedings of the 2001 IEEE International Conference on Robotics and Automation*", Vol. 4 , pp. 3344–3349.

Gallardo, J., Rico, J. M., and Frisoli, A., 2003, “Dynamics of Parallel Manipulators by Means of Screw Theory,” Mech. Mach. Theory, 38 (11), pp. 1113–1131.

[CrossRef]Khan, W. A., Krovi, V. N., and Saha, S. K., 2005, “Recursive Kinematics and Inverse Dynamics for a Planar 3R Parallel Manipulator,” ASME J. Dyn. Syst., Meas., Control, 127 , pp. 529–536.

[CrossRef]Dormand, J. R., "*Numerical Methods for Differential Equations: A Computational Approach*" (CRC, Boca Raton, FL, 1996).

Selig, J. M., "*Geometrical Methods in Robotics*" (Springer, New York, 1996).

Negrut, D., Jay, L. O., and Khude, N., 2009, “A Discussion of Low-Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics,” ASME J. Comput. Nonlinear Dyn., 4 , pp. 0210081–021008-11.

[CrossRef]Jay, L. O., and Negrut, D., 2007, “Extensions of the HHT-α Method to Differential-Algebraic Equations in Mechanics,” Electron. Trans. Numer. Anal., 26 , pp. 190–208.