First-excursion times have been developed extensively in the literature for oscillators; one major application is structural dynamics of buildings. Using the fact that most closed-loop systems operate with a moderate to high damping ratio, we have derived a new procedure for calculating first-excursion times for a class of linear continuous, time-varying systems. In several examples, we show that the algorithm is both accurate and time-efficient. These are important attributes for real-time path planning in stochastic environments, and hence the work should be useful for autonomous robotic systems involving marine and air vehicles.