Smaoui, N., 2005, “Boundary and Distributed Control of the Viscous Burgers Equation,” J. Comput. Appl. Math.

[CrossRef], 182 (1), pp. 91–104.

Hinze, M., and Kunisch, K., 2004, “Second Order Methods for Boundary Control of the Instationary Navier–Stokes System,” ZAMM

[CrossRef], 84 (3), pp. 171–87.

Kobayashi, T., and Oya, M., 2003, “Nonlinear Boundary Control of Coupled Burgers’ Equations,” Contr. Cybernet., 32 (2), pp. 245–58.

Park, H. M., and Lee, M. W., 2000, “Boundary Control of the Navier–Stokes Equation by Empirical Reduction of Modes,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 188 (1–3), pp. 165–86.

Krstic, M., 1999, “On Global Stabilization of Burgers’ Equation by Boundary Control,” Syst. Control Lett.

[CrossRef], 37 (3), pp. 123–41.

Aamo, O. M., Krstic, M., and Bewley, T. R., 2003, “Control of Mixing by Boundary Feedback in 2D Channel Flow,” Automatica

[CrossRef], 39 (10), pp. 1597–1606.

Anderson, J. D., 1995, "*Computational Fluid Dynamics: The Basics With Applications*", McGraw Hill, New York.

Kook, H., Mongeau, L., and Franchek, M. A., 2002, “Active Control of Pressure Fluctuations Due to Flow Over Helmholtz Resonators,” J. Sound Vib.

[CrossRef], 255 (1), pp. 61–76.

Rowley, C. W., Colonius, T., and Murray, R. M., 2004, “Model Reduction for Compressible Flows Using POD and Galerkin Projection,” Physica D

[CrossRef], 189 (1–2), pp. 115–29.

Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G., and Thiele, F., 2003, “A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake,” J. Fluid Mech.

[CrossRef], 497 , pp. 335–63.

Rempfer, D., 2000, “On Low-Dimensional Galerkin Models for Fluid Flow,” Theor. Comput. Fluid Dyn.

[CrossRef], 14 (2), pp. 75–88.

Holmes, P., Lumley, J. L., and Berkooz, G., 1996, "*Turbulence, Coherent Structures, Dynamical System, and Symmetry*", Cambridge University Press, Cambridge.

Noack, B. R., and Eckelmann, H., 1994, “A Global Stability Analysis of the Steady and Periodic Cylinder Wake,” J. Fluid Mech.

[CrossRef], 270 , pp. 297–330.

Noack, B. R., Papas, P., and Monketwitz, P. A., 2005, “The Need for a Pressure-Term Representation in Empirical Galerkin Models of Incompressible Shear Flows,” J. Fluid Mech.

[CrossRef], 523 , pp. 339–65.

Rowley, C. W., and Marsden, J. E., 2000, “Reconstruction Equations and the Karhunen–Loeve Expansion for Systems With Symmetry,” Physica D

[CrossRef], 142 (1–2), pp. 1–19.

Fitzpatrick, K., Feng, Y., Lind, R., Kurdila, A. J., and Mikolaitis, D. W., 2005, “Flow Control in a Driven Cavity Incorporating Excitation Phase Differential,” J. Guid. Control Dyn., 28 (1), pp. 63–70.

Samimy, M., Debiasi, M., Caraballo, E., Serrani, A., Yuan, X., Little, J., and Myatt, J. H., 2007, “Feedback Control of Subsonic Cavity Flows Using Reduced-Order Models,” J. Fluid Mech.

[CrossRef], 579 , pp. 315–346.

Singh, S. N., Myatt, J. H., Addington, G. A., Banda, S., and Hall, J. K., 2001, “Optimal Feedback Control of Vortex Shedding Using Proper Orthogonal Decomposition Models,” ASME Trans. J. Fluids Eng.

[CrossRef], 123 (3), pp. 612–618.

Hogberg, M., Bewley, T. R., and Henningson, D. S., 2001, “Linear Feedback Control and Estimation of Transition in Plane Channel Flow, J. Fluid Mech.

[CrossRef], 481 , pp. 149–175.

Camphouse, R. C., 2005, “Boundary Feedback Control Using Proper Orthogonal Decomposition Models,” J. Guid. Control Dyn., 28 , pp. 931–938.

Camphouse, R., Myatt, J., Schmit, R., Glauser, M., Ausseur, J., Andino, M., and Wallace, R., 2008, “A Snapshot Decomposition Method for Reduced Order Modeling and Boundary Feedback Control,” AIAA Paper No. 2008-4195.

Efe, M. O., and Ozbay, H., 2004, “Low Dimensional Modelling and Dirichlet Boundary Controller Design for Burgers Equation,” Int. J. Control

[CrossRef], 77 (10), pp. 895–906.

Kasnakoglu, C., Serrani, A., and Efe, M. O., 2008, “Control Input Separation by Actuation Mode Expansion for Flow Control Problems,” Int. J. Control, 81 (9), pp. 1475–1492.

Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., 1978, “Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization,” Journal of Fluid Mechanics Digital Archive, 86 , pp. 179–200.

Orellano, A., and Wengle, H., 2000, “Numerical Simulation (DNS and LES) of Manipulated Turbulent Boundary Layer Flow Over a Surface-Mounted Fence,” Eur. J. Mech. B/Fluids, 19 , pp. 765–788.

Kasnakoglu, C., and Serrani, A., 2007, “Oscillation Supression in Galerkin Systems Using Center-Manifold and Averaging Techniques,” Eur. J. Control, 5 (13), pp. 529–542.

Kasnakoglu, C., and Serrani, A., 2007, “Analysis and Nonlinear Control of Galerkin Models Using Averaging and Center Manifold Theory,” "*American Control Conference*", New York, pp. 3035–3040.

Camphouse, R. C., and Myatt, J. H., 2004, “Feedback Control for a Two-Dimensional Burgers Equation System Model,” "*Second AIAA Flow Control Conference*", Portland, OR.

Batchelor, G. K., 2000, "*An Introduction to Fluid Dynamics*", Cambridge University Press, Cambridge, United Kingdom.

Aamo, O. M., and Krstic, M., 2004, “Feedback Control of Particle Dispersion in Bluff Body Wakes,” Int. J. Control, 77 (11), pp. 1001–1018.

Noack, B. R., Tadmor, G., and Morzynski, M., 2004, “Low-Dimensional Models for Feedback Flow Control. Part I: Empirical Galerkin Models,” "*Proceedings of the Second AIAA Flow Control Conference*", Portland, OR, AIAA Paper No. 2004-2408.

Tadmor, G., Noack, B. R., Morzynski, M., and Siegel, S., 2004, “Low-Dimensional Models for Feedback Flow Control. Part II: Controller Design And Dynamic Estimation,” "*Proceedings of the Second AIAA Flow Control Conference*", Portland, OR, AIAA Paper No. 2004-2409.

Marsden, J. E., and McCracken, M., 1976, "*The Hopf Bifurcation and Its Applications*", Springer-Verlag, New York, NY.

Chow, S. N., and Mallet-Paret, J., 1977, “Integral Averaging and Bifurcation,” J. Differ. Equations

[CrossRef], 26 (1), pp. 112–159.

Wiggins, S., 2003, "*Introduction to Applied Nonlinear Dynamical Systems and Chaos*", Springer-Verlag, New York, NY, 2nd edition.

Vidyasagar, M., 2002, "*Nonlinear Systems Analysis*", 2nd ed., Society for Industrial and Applied Mathematics , Philadelphia, PA.

Burns, J., and Kang, S., 1991, “A Control Problem for Burgers Equation With Bounded Input∕Output,” Nonlinear Dyn.

[CrossRef], 2 , pp. 235–262.