Hartmann, J., 1937, “Theory of the Laminar Flow of an Electrically Conductive Liquid in a Homogeneous Magnetic Field,” K. Dan. Vidensk. Selsk. Mat. Fys. Medd., 15 (6), pp. 1–27.

Muller, U., and Buhler, L., 2001, "*Magnetofluiddynamics in Channels and Containers*", Springer, Berlin.

Schmid, P. J., and Henningson, D. S., 2001, "*Stability and Transition in Shear Flows*", Springer, New York.

Högberg, M., Bewley, T. R., and Henningson, D. S., 2003, “Linear Feedback Control and Estimation of Transition in Plane Channel Flow,” J. Fluid Mech.

[CrossRef], 481 , pp. 149–175.

Vazquez, R., and Krstic, M., 2007, “A Closed-Form Feedback Controller for Stabilization of the Linearized 2D Navier-Stokes Poiseuille Flow,” IEEE Trans. Autom. Control, 52 , pp. 2298–2312.

Cochran, J., Vazquez, R., and Krstic, M., 2006, “Backstepping Boundary Control of Navier-Stokes Channel Flow: A 3D Extension,” "*Proceedings of the 2006 American Control Conference*".

Triggiani, R., 2007, “Stability Enhancement of a 2-D Linear Navier-Stokes Channel Flow by a 2-D, Wall-Normal Boundary Controller,” Discrete Contin. Dyn. Syst., Ser. B, 8 (2), pp. 279–314.

Aamo, O. M., and Krstic, M., 2002, "*Flow Control by Feedback: Stabilization and Mixing*", Springer, New York.

Balogh, A., Liu, W. -J., and Krstic, M., 2001, “Stability Enhancement by Boundary Control in 2D Channel Flow,” IEEE Trans. Autom. Control

[CrossRef], 46 , pp. 1696–1711.

Baker, J., Armaou, A., and Christofides, P., 2000, “Nonlinear Control of Incompressible Fluid Flow: Application to Burgers’ Equation and 2D Channel Flow,” J. Math. Anal. Appl.

[CrossRef], 252 , pp. 230–255.

Vladimirov, V., and Ilin, K., 1998, “The Three-Dimensional Stability of Steady MHD Flows of an Ideal Fluid,” Phys. Plasmas

[CrossRef], 5 (12), pp. 4199–4204.

Takashima, M., 1996, “The Stability of the Modified Plane Poiseuille Flow in the Presence of a Transverse Magnetic Field,” Fluid Dyn. Res.

[CrossRef], 17 , pp. 293–310.

Krasnov, D., Zienicke, E., Zikanov, O., Boeck, T., and Thess, A., 2004, “Numerical Study of the Instability of the Hartmann Layer,” J. Fluid Mech.

[CrossRef], 504 , pp. 183–211.

Lock, R., 1955, “The Stability of the Flow of an Electrically Conducting Fluid Between Parallel Planes Under a Transverse Magnetic Field,” Proc. R. Soc. London, Ser. A

[CrossRef], 233 , pp. 105–125.

Albrecht, T., Metzkes, H., Grundmann, R., Mutschke, G., and Gerbeth, G., 2008, “Tollmien-Schlichting Wave Damping by a Streamwise Oscillating Lorentz Force,” Magnetohydrodynamics, 44 (3), pp. 205–222.

Pang, J., and Choi, K. -S., 2004, “Turbulent Drag Reduction by Lorentz Force Oscillation,” Phys. Fluids

[CrossRef], 16 (5), pp. L35–L38.

Breuer, K., Park, J., and Henoch, C., 2004, “Actuation and Control of a Turbulent Channel Flow Using Lorentz Forces,” Phys. Fluids

[CrossRef], 16 (4), pp. 897–907.

Spong, E., Reizes, J., and Leonardi, E., 2005, “Efficiency Improvements of Electromagnetic Flow Control,” Int. J. Heat Fluid Flow, 26 , pp. 635–655.

Berger, W., Kim, J., Lee, C., and Lim, J., 2000, “Turbulent Boundary Layer Control Utilizing the Lorentz Force,” Phys. Fluids

[CrossRef], 12 , pp. 631–649.

Choi, H., Moin, P., and Kim, J., 1994, “Active Turbulence Control for Drag Reduction in Wall-Bounded Flows,” J. Fluid Mech.

[CrossRef], 262 , pp. 75–110.

Baker, J., and Christofides, P., 2002, “Drag Reduction in Transitional Linearized Channel Flow Using Distributed Control,” Int. J. Control, 75 , pp. 1213–1218.

Airiau, C., and Castets, M., 2004, “On the Amplification of Small Disturbances in a Channel Flow With a Normal Magnetic Field,” Phys. Fluids

[CrossRef], 16 , pp. 2991–3005.

Debbagh, K., Cathalifaud, P., and Airiau, C., 2007, “Optimal and Robust Control of Small Disturbances in a Channel Flow With a Normal Magnetic Field,” Phys. Fluids

[CrossRef], 19 (1), p. 014103.

Thibault, J. -P., and Rossi, L., 2003, “Electromagnetic Flow Control: Characteristic Numbers and Flow Regimes of a Wall-Normal Actuator,” J. Phys. D: Appl. Phys.

[CrossRef], 36 , pp. 2559–2568.

Singh, S., and Bandyopadhyay, P., 1997, “Linear Feedback Control of Boundary Layer Using Electromagnetic Microtiles,” ASME J. Fluids Eng.

[CrossRef], 119 (4), pp. 852–858.

Barbu, V., Popa, C., Havarneanu, T., and Sritharan, S., 2003, “Exact Controllability of Magneto-Hydrodynamic Equations,” Commun. Pure Appl. Math.

[CrossRef], 56 (6), pp. 732–783.

Sritharan, S., Barbu, V., Havarneanu, T., and Popa, C., 2005, “Advances in Differential Equations,” IEEE Trans. Autom. Control, 10 (5), pp. 481–504.

Dietiker, J. -F., and Hoffmann, K., 2002, “Backstepping Boundary Control of Navier-Stokes Channel Flow: A 3D Extension,” AIAA Paper No. 2002-0130.

Schuster, E., and Krstic, M., 2003, “Inverse Optimal Boundary Control for Mixing in Magnetohydrodynamic Channel Flows,” "*Proceedings of the 2003 CDC*".

Schuster, E., Luo, L., and Krstic, M., 2008, “MHD Channel Flow Control in 2D: Mixing Enhancement by Boundary Feedback,” Automatica, 44 , pp. 2498–2507.

Bandyopadhyay, P. R., and Castano, J. M., 1996, “Micro-Tiles for Electromagnetic Turbulence Control in Saltwater—Preliminary Investigations,” ASME Fluids Engineering Division Conference , Vol. 2 , p. 53.

Vazquez, R., Schuster, E., and Krstic, M., 2008, “Magnetohydrodynamic State Estimation With Boundary Sensors,” Automatica, 44 , pp. 2517–2527.

Xu, C., Schuster, E., Vazquez, R., and Krstic, M., 2008, “Stabilization of Linearized 2D Magnetohydrodynamic Channel Flow by Backstepping Boundary Control,” Syst. Control Lett., 57 , pp. 805–812.

Bamieh, B., Paganini, F., and Dahleh, M. A., 2000, “Distributed Control of Spatially-Invariant Systems,” IEEE Trans. Autom. Control, 45 , pp. 1091–1107.

Smyshlyaev, A., and Krstic, M., 2004, “Closed Form Boundary State Feedbacks for a Class of Partial Integro-Differential Equations,” IEEE Trans. Autom. Control

[CrossRef], 49 , pp. 2185–2202.

Jovanovic, M., and Bamieh, B., 2005, “Componentwise Energy Amplification in Channel Flows,” J. Fluid Mech.

[CrossRef], 534 , pp. 145–183.

Reddy, S. C., Schmid, P. J., and Henningson, D. S., 1993, “Pseudospectra of the Orr-Sommerfeld Operator,” SIAM J. Appl. Math.

[CrossRef], 53 (1), pp. 15–47.

Lee, D., and Choi, H., 2001, “Magnetohydrodynamic Turbulent Flow in a Channel at Low Magnetic Reynolds Number,” J. Fluid Mech.

[CrossRef], 439 , pp. 367–394.

Vazquez, R., Trelat, E., and Coron, J. -M., 2008, “Control for Fast and Stable Laminar-to-High-Reynolds-Numbers Transfer in a 2D Navier-Stokes Channel Flow,” Discrete Contin. Dyn. Syst., Ser. B, 10 , pp. 925–956.

Sermange, M., and Temam, R., 1983, “Some Mathematical Questions Related to the MHD Equations,” Commun. Pure Appl. Math.

[CrossRef], 36 , pp. 635–664.

Cochran, J., and Krstic, M., 2008, “Motion Planning and Trajectory Tracking for the 3-D Poiseuille Flow,” J. Fluid Mech., in press

Vazquez, R., and Krstic, M., 2008, “Control of 1-D Parabolic PDEs With Volterra Non-Linearities, Part I: Design,” Automatica, 44 , pp. 2778–2790.

Vazquez, R., and Krstic, M., 2008, “Control of 1-D Parabolic PDEs With Volterra Non-Linearities, Part II: Analysis,” Automatica, 44 , pp. 2791–2803.

Krstic, M., Magnis, L., and Vazquez, R., 2008, “Nonlinear Stabilization of Shock-Like Unstable Equilibria in the Viscous Burgers PDE,” IEEE Trans. Autom. Control

[CrossRef], 53 , pp. 1678–1683.

Krstic, M., Magnis, L., and Vazquez, R., 2009, “Nonlinear Control of the Viscous Burgers Equation: Trajectory Generation, Tracking, and Observer Design,” ASME J. Dyn. Syst., Meas., Control

[CrossRef], 131 (2), p. 021012.