Suh, B. S., and Yang, J. H., 2005, “A Tuning of PID Regulators via LQR Approach,” J. Chem. Eng. Jpn., 38 (5), pp. 344–356.

[CrossRef]Yi, S., Nelson, P. W., and Ulsoy, A. G., 2009, “Eigenvalue Assignment via the Lambert W Function for Control for Time-Delay Systems,” J. Vib. Control, in press.

Richard, J. P., 2003, “Time-Delay Systems: An Overview of Some Recent Advances and Open Problems,” Automatica, 39 (10), pp. 1667–1694.

[CrossRef]Mahmoud, M. S., 2000, "*Robust Control and Filtering for Time-Delay Systems*", Marcel Dekker, New York.

Niculescu, S. I., 1998, “H-Infinity Memoryless Control With an Alpha-Stability Constraint for Time-Delay Systems: An LMI Approach,” IEEE Trans. Autom. Control, 43 (5), pp. 739–743.

[CrossRef]Michiels, W., and Roose, D., 2003, “An Eigenvalue Based Approach for the Robust Sun Yi DS-08-1196 24 Stabilization of Linear Time-Delay Systems,” Int. J. Control, 76 (7), pp. 678–686.

[CrossRef]Hrissagis, K., and Kosmidou, O. I., 1998, “Delay-Dependent Robust Stability Conditions and Decay Estimates for Systems With Input Delays,” Kybernetika, 34 (6), pp. 681–691.

Postlethwaite, I., and Foo, Y. K., 1985, “Robustness With Simultaneous Pole and Zero Movement Across the J-Omega-Axis,” Automatica, 21 (4), pp. 433–443.

[CrossRef]Wang, Z. H., and Hu, H. Y., 2007, “Robust Stability of Time-Delay Systems With Uncertain Parameters,” "*IUTAM Symposium on Dynamics and Control of Nonlinear Systems With Uncertainty*", Vol. 2 , pp. 363–372.

Kawabata, K., and Mori, T., 2009, “Feedback Enlargement of Stability Radius by Nondifferentiable Optimization,” Electr. Eng. Jpn., 166 (3), pp. 55–61.

[CrossRef]Tsoi, A. C., and Gregson, M. J., 1978, “Recent Advances in the Algebraic System Theory of Delay Differential Equations,” "*Recent Theoretical Developments in Control*", M.J.Gregson, ed., Academic, New York, pp. 67–127.

Yi, S., Nelson, P. W., and Ulsoy, A. G., 2007, “Survey on Analysis of Time Delayed Systems via the Lambert W Function,” Dyn. Contin. Discrete Impulsive Syst.: Ser. A - Math. Anal., 14 , pp. 296–301.

Patel, R. V., Toda, M., and Sridhar, B., 1977, “Robustness of Linear Quadratic State Feedback Designs in Presence of System Uncertainty,” IEEE Trans. Autom. Control, 22 (6), pp. 945–949.

[CrossRef]Bengea, S. C., Li, X. Q., and DeCarlo, R. A., 2004, “Combined Controller-Observer Design for Uncertain Time Delay Systems With Application to Engine Idle Speed Control,” ASME J. Dyn. Syst., Meas., Control, 126 (4), pp. 772–780.

[CrossRef]Manitius, A., and Olbrot, A. W., 1979, “Finite Spectrum Assignment Problem for Systems With Delays,” IEEE Trans. Autom. Control, 24 (4), pp. 541–552.

[CrossRef]Michiels, W., Engelborghs, K., Vansevenant, P., and Roose, D., 2002, “Continuous Pole Placement for Delay Equations,” Automatica, 38 (5), pp. 747–761.

[CrossRef]Hu, G., and Davison, E. J., 2003, “Real Stability Radii of Linear Time-Invariant Time-Delay Systems,” Syst. Control Lett., 50 (3), pp. 209–219.

[CrossRef]Franklin, G. F., Powell, J. D., and Emami-Naeini, A., 2005, "*Feedback Control of Dynamic Systems*", Prentice-Hall, Upper Saddle River, NJ.

Hale, J. K., and Lunel, S. M. V., 1993, "*Introduction to Functional Differential Equations*", Springer-Verlag, New York.

Asl, F. M., and Ulsoy, A. G., 2003, “Analysis of a System of Linear Delay Differential Equations,” ASME J. Dyn. Syst., Meas., Control, 125 (2), pp. 215–223.

[CrossRef]Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D. E., 1996, “On the Lambert W Function,” Adv. Comput. Math., 5 (1), pp. 329–359.

[CrossRef]Yi, S., Ulsoy, A. G., and Nelson, P. W., 2006, “Solution of Systems of Linear Delay Sun Yi DS-08-1196 26 Differential Equations via Laplace Transformation,” "*Proceedings of the 45th IEEE Conference on Decision and Control*", San Diego, CA, Dec., pp. 2535–2540.

Yi, S., Nelson, P. W., and Ulsoy, A. G., “"*Time-Delay Systems: Analysis and Control Using the Lambert W Function*",” World Scientific, Singapore, in press.

Banks, H. T., and Manitius, A., 1975, “Projection Series for Retarded Functional Differential Equations With Applications to Optimal Control Problems,” J. Differ. Equations, 18 (2), pp. 296–332.

[CrossRef]Bellman, R. E., and Cooke, K. L., 1963, "*Differential-Difference Equations*", Academic, New York.

Chen, Y., and Moore, K. L., 2002, “Analytical Stability Bound for Delayed Second-Order Systems With Repeating Poles Using Lambert Function W,” Automatica, 38 (5), pp. 891–895.

[CrossRef]Cheng, Y., and Hwang, C., 2006, “Use of the Lambert W Function for Time-Domain Analysis of Feedback Fractional Delay Systems,” IEE Proc.: Control Theory Appl., 153 (2), pp. 167–174.

[CrossRef]Hövel, P., and Schöll, E., 2005, “Control of Unstable Steady States by Time-Delayed Feedback Methods,” Phys. Rev. E, 72 (4), p. 046203.

[CrossRef]Hwang, C., and Cheng, Y. -C., 2005, “A Note on the Use of the Lambert W Function in the Stability Analysis of Time-Delay Systems,” Automatica, 41 (11), pp. 1979–1985.

[CrossRef]Yi, S., Nelson, P. W., and Ulsoy, A. G., 2007, “Delay Differential Equations via the Sun Yi DS-08-1196 27 Matrix Lambert W Function and Bifurcation Analysis: Application to Machine Tool Chatter,” Math. Biosci. Eng., 4 (2), pp. 355–368.

Shinozaki, H., and Mori, T., 2006, “Robust Stability Analysis of Linear Time-Delay Systems by Lambert W Function: Some Extreme Point Results,” Automatica, 42 (10), pp. 1791–1799.

[CrossRef]Radjavi, H., and Rosenthal, P., 2000, "*Simultaneous Triangularization*", Springer, New York.

Gu, K., and Niculescu, S. I., 2003, “Survey on Recent Results in the Stability and Control of Time-Delay Systems,” ASME J. Dyn. Syst., Meas., Control, 125 (2), pp. 158–165.

[CrossRef]Yi, S., Nelson, P. W., and Ulsoy, A. G., 2008, “Controllability and Observability of Systems of Linear Delay Differential Equations via the Matrix Lambert W Function,” IEEE Trans. Autom. Control, 53 (3), pp. 854–860.

[CrossRef]Smith, O., 1957, “Closer Control of Loops With Dead Time,” Chem. Eng. Prog., 53 , pp. 217–219.

Zhong, Q. C., 2006, "*Robust Control of Time-Delay Systems*", Springer, London.

Furukawa, T., and Shimemura, E., 1983, “Predictive Control for Systems With Time-Delay,” Int. J. Control, 37 (2), pp. 399–412.

[CrossRef]Niculescu, S. I., and Annaswamy, A. M., 2003, “An Adaptive Smith-Controller for Time-Sun Yi DS-08-1196 28 Delay Systems With Relative Degree n∗<=2,” Syst. Control Lett., 49 (5), pp. 347–358.

[CrossRef]Yildiz, Y., Annaswamy, A., Yanakiev, D., and Kolmanovsky, I., 2007, “Adaptive Idle Speed Control for Internal Combustion Engines,” "*Proceedings of the 26th ACC*", New York, NY, Jul., pp. 3700–3705.

Mao, W. J., and Chu, J., 2006, “D-Stability for Linear Continuous-Time Systems With Multiple Time Delays,” Automatica, 42 (9), pp. 1589–1592.

[CrossRef]Li, X., and deSouza, C. E., 1998, “Output Feedback Stabilization of Linear Time-Delay Systems,” "

*Stability and Control of Time-Delay Systems*", L.Dugard and E.I.Verriest, eds., Springer, New York, pp. 241–258.

[CrossRef]Qiu, L., Bernhardsson, B., Rantzer, A., Davison, E. J., Young, P. M., and Doyle, J. C., 1995, “A Formula for Computation of the Real Stability Radius,” Automatica, 31 (6), pp. 879–890.

[CrossRef]Wang, Q. G., Liu, M., and Hang, C. C., 2007, “Approximate Pole Placement With Dominance for Continuous Delay Systems by PID Controllers,” Can. J. Chem. Eng., 85 (4), pp. 549–557.

[CrossRef]de la Sen, M., 2005, “On Pole-Placement Controllers for Linear Time-Delay Systems With Commensurate Point Delays,” Math. Probl. Eng., 2005 (1), pp. 123–140.

[CrossRef]Shafiei, Z., and Shenton, A. T., 1997, “Frequency-Domain Design of PID Controllers for Stable and Unstable Systems With Time Delay,” Automatica, 33 (12), pp. 2223–2232.

[CrossRef]Kaya, I., 2004, “IMC Based Automatic Tuning Method for PID Controllers in a Smith Predictor Configuration,” Comput. Chem. Eng., 28 (3), pp. 281–290.

[CrossRef]