This paper investigates mode-independent stabilization of Markovian jump systems with time-varying delays via a sliding mode approach. A sufficient condition is proposed to guarantee the existence of a mode-independent sliding surface. Because the real plant regime mode is not directly accessible and instantly available, a controller is reconfigured online by calculating a detection function such that the closed-loop system converges to the sliding surface in finite time. A comparison example is presented to illustrate merits of the developed theory.