0
TECHNICAL PAPERS

A Recursive Multibody Dynamics and Sensitivity Algorithm for Branched Kinematic Chains

[+] Author and Article Information
Garett A. Sohl, James E. Bobrow

Department of Mechanical Engineering, University of California, Irvine Irvine, CA 92697

J. Dyn. Sys., Meas., Control 123(3), 391-399 (Jul 10, 2000) (9 pages) doi:10.1115/1.1376121 History: Received July 10, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Pandy, M. G., and Anderson, F. C., 2000, “Dynamic simulation of human movement using large-scale models of the body,” Proceedings of the 2000 IEEE Conference on Robotics and Automation (San Francisco, CA), IEEE, Apr., pp. 676–680.
van-de Panne, M., Laszlo, J., Huang, P., and Faloutsos, P., 2000, “Towards agile animated characters,” Proceedings of the 2000 IEEE Conference on Robotics and Automation, San Francisco, CA, IEEE, Apr. pp. 682–687.
Hooker,  W. W., and Margulies,  G., 1965, “The dynamical attitude equations for an n-body satellite,” J. Astronaut. Sci., 12, No. 4, pp. 123–128.
Uicker, J. J., 1965, “On the dynamic analysis of spatial linkages using 4×4 matrices,” Ph.D. thesis, Northwestern University.
Stepanenko,  Y., and Vukobratovic,  M., 1976, “Dynamics of articulated open-chain active mechanisms,” Math. Biosci., 28, No. 1–2, pp. 137–170.
Orin,  D., McGhee,  R., Vukobratovic,  M., and Hartoch,  G., 1979, “Kinematic and kinetic analysis of open-chain linkages utilizing newton-euler methods,” Math. Biosci., 43, No. 1–2, pp. 107–130.
Luh,  J., Walker,  M., and Paul,  R., 1980, “On-line computational scheme for mechanical manipulators,” ASME J. Dyn. Syst., Meas., Control, 102, No. 2, pp. 69–76.
Hollerbach,  J. M., 1980, “A recursive lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity,” IEEE Trans. Syst. Man Cybern., 10, No. 11, pp. 730–736.
Silver,  W. M., 1982, “On the equivalance of lagrangian and newton-euler dynamics for manipulators,” Int. J. Robot. Res., 1, No. 2, pp. 118–128.
Balafoutis,  C. A., Misra,  P., and Patel,  R. V., 1986, “Recursive evaluation of linearized robot dynamic models,” IEEE J. Rob. Autom., RA-2, No. 3, pp. 146–155.
Murray,  J. J., and Neuman,  C. P., 1986, “Linearization and sensitivity models of the newton-euler dynamic robot model,” ASME J. Dyn. Syst., Meas., Control, 108, No. 3, pp. 272–276.
Martin,  B. J., and Bobrow,  J. E., 1999, “Minimum effort motions for open-chain manipulators with task-dependent end-effector constraints,” Int. J. Robot. Res., 18, No. 2, pp. 213–224.
Featherstone, R., 1987, Robot dynamics algorithms, Kluwer, Boston.
Rodriguez,  G., 1987, “Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics,” IEEE J. Rob. Autom., RA-3, No. 6, pp. 510–521.
Rodriguez,  G., Jain,  A., and Kreutz-Delgado,  K., 1991, “A spatial operator algebra for manipulator modeling and control,” Int. J. Robot. Res., 5, No. 4, pp. 510–521.
Jain,  A., and Rodriguez,  G., 1993, “An analysis of the kinematics and dynamics of underactuated manipulators,” IEEE J. Rob. Autom., 9, No. 4, pp. 411–421.
Featherstone,  R., 1999, “A divide-and-conquer articulated-body algorithm for parallel o(log(n)) calculation of rigid body dynamics. part 1: Basic algorithm,” Int. J. Robot. Res., 18, No. 9, pp. 867–875.
Park,  F. C., Bobrow,  J. E., and Ploen,  S. R., 1995, “A lie group formulation of robot dynamics,” Int. J. Robot. Res., 14, No. 6, pp. 609–618.
Brockett, R. W., 1983, “Robotic manipulators and the product of exponentials formula,” Proc. of Int. Symposium on the Mathematical Theory of Networks and Systems, Beer Sheba, Israel, pp. 120–129.
Li, Z., 1989, “Kinematics, planning and control of dextrous robot hands,” Ph.D. thesis, University of California, Berkeley.
Ploen,  S. R., and Park,  F. C., 1999, “Coordinate invariant algorithms for robot dynamics,” IEEE Trans. Rob. Autom., 15, No. 6, pp. 1130–1135.
Chen,  IM, and Yang,  G., 1998, “Automatic model generation for modular reconfigurable robot dynamics,” ASME J. Dyn. Syst., Meas., Control, 120, No. 3, pp. 346–352.
Chen,  IM, Yeo,  S. H., Chen,  G., and Yang,  G., 1999, “Kernel for modular robot applications: automatic modeling techniques,” Int. J. Robot. Res., 18, No. 2, pp. 225–242.
Spivak, M., 1965, Calculus on manifolds, The Benjamin/Cummings Publishing Co.
Murray, R. M., Li, Z., and Sastry, S. S., 1994, A mathematical introduction to robotic manipulation, CRC Press.
Sohl, G. A., and Bobrow, J. E., 1999, “Optimal motions for underactuated manipulators,” ASME Design Technical Conferences, Las Vegas, Nevada, ASME, Sept.
Wang, C-Y. E., Timoszyk, W. K., and Bobrow, J. E., 1999, “Weightlifting motion planning for a puma 762 robot,” Proceedings of the 1999 IEEE Conference on Robotics and Automation, Detroit, MI, IEEE, May, pp. 480–485.
Spong, M. W., 1994, “Swing up control of the acrobot,” Proceedings 1994 IEEE International Conference on Robotics and Automation, Los Alamitos, CA, IEEE, May, pp. 2356–2361.

Figures

Grahic Jump Location
Initial path for planar 2R problem
Grahic Jump Location
Final path for planar 2R problem
Grahic Jump Location
Initial path for Acrobot swing-up motion
Grahic Jump Location
Optimal swing up motion with q1(0)=−1.0
Grahic Jump Location
Optimal swing up motion with q1(0)=−1.3
Grahic Jump Location
Initial path for branched Acrobot swing-up problem
Grahic Jump Location
Locally optimal swing-up for branched Acrobot
Grahic Jump Location
Locally optimal swing-up for branched Acrobot with different initial condition

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In