0
Research Papers

Recursive Composite Adaptation for Robot Manipulators

[+] Author and Article Information
Hanlei Wang

Science and Technology on Space Intelligent Control Laboratory,
Beijing Institute of Control Engineering,
Beijing, 100190, China
e-mail: wanghanlei01@yahoo.com.cn

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received October 31, 2011; final manuscript received July 19, 2012; published online November 7, 2012. Assoc. Editor: Nariman Sepehri.

J. Dyn. Sys., Meas., Control 135(2), 021010 (Nov 07, 2012) (8 pages) Paper No: DS-11-1341; doi: 10.1115/1.4007557 History: Received October 31, 2011; Revised July 19, 2012

In this paper, we investigate the recursive implementation of composite adaptive control for robot manipulators. Via exploitation of the relation between the inertia matrix and the Coriolis and centrifugal matrix, we present the recursive algorithm for the derivation of the filtered manipulator model, which, to our knowledge, is the first result on this point in the literature. With this filtered model, the prediction error of the filtered torque is obtained and injected to the direct adaptation, forming the well-known composite adaptation law, with an acceptable amount of computation O(n2). A six degree-of-freedom (DOF) manipulator is employed as a simulation example to show the performance and the computational complexity of the proposed recursive algorithm.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ortega, R., and Spong, M. W., 1989, “Adaptive Motion Control of Rigid Robots: A Tutorial,” Automatica, 25(6), pp. 877–888. [CrossRef]
Craig, J. J., Hsu, P., and Sastry, S. S., 1987, “Adaptive Control of Mechanical Manipulators,” Int. J. Rob. Res., 6(2), pp. 16–28. [CrossRef]
Middleton, R. H., and Goodwin, G. C., 1988, “Adaptive Computed Torque Control for Rigid Link Manipulators,” Syst. Control Lett., 10(1), pp. 9–16. [CrossRef]
Spong, M. W., and Ortega, R., 1990, “On Adaptive Inverse Dynamics Control of Rigid Robots,” IEEE Trans. Autom. Control, 35(1), pp. 92–95. [CrossRef]
Dawson, D. M., and Lewis, F. L., 1991, “Comments on ‘On Adaptive Inverse Dynamics Control of Rigid Robots',” IEEE Trans. Autom. Control, 36(10), pp. 1215–1216. [CrossRef]
Feng, G., and Palaniswami, M., 1993, “Adaptive Control of Robot Manipulators in Task Space,” IEEE Trans. Autom. Control, 38(1), pp. 100–104. [CrossRef]
Berghuis, H., and Nijmeijer, H., 1993, “A Passivity Approach to Controller-Observer Design for Robots,” IEEE Trans. Rob. Autom., 9(6), pp. 740–754. [CrossRef]
Slotine, J. J. E., and Li, W., 1987, “On the Adaptive Control of Robot Manipulators,” Int. J. Rob. Res., 6(3), pp. 49–59. [CrossRef]
Slotine, J. J. E., and Li, W., 1988, “Adaptive Manipulator Control: A Case Study,” IEEE Trans. Autom. Control, 33(11), pp. 995–1003. [CrossRef]
Slotine, J. J. E., and Li, W., 1989, “Composite Adaptive Control of Robot Manipulators,” Automatica, 25(4), pp. 509–519. [CrossRef]
Lozano-Leal, R., and Canudas de Wit, C., 1990, “Passivity Based Adaptive Control for Mechanical Manipulators Using LS-Type Estimation,” IEEE Trans. Autom. Control, 35(12), pp. 1363–1365. [CrossRef]
Brogliato, B., Landau, I.-D., and Lozano-Leal, R., 1991, “Adaptive Motion Control of Robot Manipulators: A Unified Approach Based on Passivity,” Int. J. Robust Nonlinear Control, 1(3), pp. 187–202. [CrossRef]
Tang, Y., and Arteaga, M. A., 1994, “Adaptive Control of Robot Manipulators Based on Passivity,” IEEE Trans. Autom. Control, 39(9), pp. 1871–1875. [CrossRef]
Sun, D., and Mills, J. K., 1999, “Performance Improvement of Industrial Robot Trajectory Tracking Using Adaptive-Learning Scheme,” ASME J. Dyn. Sys., Meas., Control, 121, pp. 285–292. [CrossRef]
Cheah, C. C., Liu, C., and Slotine, J. J. E., 2006 “Adaptive Tracking Control for Robots With Unknown Kinematic and Dynamic Properties,” Int. J. Rob. Res., 25(3), pp. 283–296. [CrossRef]
Braganza, D., Dixon, W. E., Dawson, D. M., and Xian, B., 2008, “Tracking Control for Robot Manipulators With Kinematic and Dynamic Uncertainty,” Int. J. Rob. Autom., 23(2), pp. 117–126. [CrossRef]
Leite, A. C., Zachi, A. R. L., Lizarralde, F., and Hsu, L., 2011, “Adaptive 3D Visual Servoing Without Image Velocity Measurement for Uncertain Manipulators,” 18th IFAC World Congress, Milano, Italy, pp. 14584–14589. [CrossRef]
Patre, P. M., MacKunis, W., Makker, C., and Dixon, W. E., 2008, “Asymptotic Tracking for Systems With Structured and Unstructured Uncertaities,” IEEE Trans. Control Syst. Technol., 16(2), pp. 373–379. [CrossRef]
Patre, P. M., MacKunis, W., Kaiser, K., and Dixon, W. E., 2008, “Asymptotic Tracking for Uncertain Dynamic Systems via a Multilayer Neural Network Feedforward and RISE Feedback Control Structure,” IEEE Trans. Autom. Control, 53(9), pp. 2180–2185. [CrossRef]
Patre, P. M., MacKunis, W., Johnson, M., and Dixon, W. E., 2010, “Composite Adaptive Control for Euler-Lagrange Systems With Additive Disturbances,” Automatica, 46, pp. 140–147. [CrossRef]
Patre, P. M., Bhasin, S., Wilcox, Z. D., and Dixon, W. E., 2010, “Composite Adaptation for Neural Network-Based Controllers,” IEEE Trans. Autom. Control, 55(4), pp. 944–950. [CrossRef]
Walker, M. W., 1990, “Adaptive Control of Manipulators Containing Closed Kinematic Loops,” IEEE Trans. Rob. Autom., 6(1), pp. 10–19. [CrossRef]
Niemeyer, G., and Slotine, J. J. E., 1988, “Performance in Adaptive Manipulator Control,” Proceeding of the IEEE Conference on Decision and Control, Austin, TX, pp. 1585–1591. [CrossRef]
Niemeyer, G., and Slotine, J. J. E., 1991, “Performance in Adaptive Manipulator Control,” Int. J. Rob. Res., 10(2), pp. 149–161. [CrossRef]
Featherstone, R., 2008, Rigid Body Dynamics Algorithm, Springer, New York.
Huo, W., Gao, W., and Cheng, M., 1994, “A New Robot Model and Associated Control Algorithm,” Acta Automatica Sin., 20(3), pp. 278–285 (in Chinese).
Ploen, S. R., 1999, “A Skew-Symmetric Form of the Recursive Newton-Euler Algorithm for the Control of Multibody Systems,” Proceedings of the American Control Conference, San Diego, CA, pp. 3770–3773. [CrossRef]
Lin, H.-C., Lin, T.-C., and Yae, K. H., 1995, “On the Skew-Symmetric Property of the Newton-Euler Formulation for Open-Chain Robot Manipulators,” Proceedings of the American Control Conference, Seattle, WA, pp. 2322–2326. [CrossRef]
Wang, H., 2010, “On the Recursive Implementaion of Adaptive Control for Robot Manipulators,” Chinese Control Conference, Beijing, China, pp. 2154–2161.
Fu, K. S., Gonzalez, R. C., and Lee, C. S. G., 1987, Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill Book Co., New York.
Slotine, J. J. E., and Li, W., 1991, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ.
Spong, M. W., and Vidyasagar, M., 1989, Robot Dynamics and Control, John Willey & Sons, Inc., New York.
Hollerbach, J. M., 1980, “A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation Complexity,” IEEE Trans. Syst., Man Cybern., SMC-10(11), pp. 730–736. [CrossRef]
Jaritz, A., and Spong, M. W., 1996, “An Experimental Comparison of Robust Control Algorithms on a Direct Drive Manipulator,” IEEE Trans. Control Syst. Technol., 4(6), pp. 627–640. [CrossRef]
Walker, M. W., and Orin, D. E., 1982, “Efficient Dynamic Computer Simulation of Robotic Mechanisms,” ASME J. Dyn. Sys., Meas., Control, 104, pp. 205–211. [CrossRef]
Balafoutis, C. A., and Patel, R. V., 1989, “Efficient Computation of Manipulator Inertia Matrices and the Direct Dynamics Problem,” IEEE Trans. Syst, Man Cybern., 19(5), pp. 1313–1321. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Link frames and geometrical parameters

Grahic Jump Location
Fig. 2

A six-DOF manipulator grasping an unknown load

Grahic Jump Location
Fig. 3

Position tracking errors (composite adaptation)

Grahic Jump Location
Fig. 4

Parameter estimates (composite adaptation)

Grahic Jump Location
Fig. 5

Position tracking errors (direct adaptation)

Grahic Jump Location
Fig. 6

Parameter estimates (direct adaptation)

Grahic Jump Location
Fig. 7

Position tracking errors (direct adaptation, practical case)

Grahic Jump Location
Fig. 8

Parameter estimates (direct adaptation, practical case)

Grahic Jump Location
Fig. 9

Position tracking errors (composite adaptation, practical case)

Grahic Jump Location
Fig. 10

Parameter estimates (composite adaptation, practical case)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In