Research Papers

Robust Joint Position Feedback Control of Robot Manipulators

[+] Author and Article Information
Tesheng Hsiao

Department of Electrical and Computer Engineering,
National Chiao Tung University,
1001 Ta Hsueh Road,
Hsinchu, 30010, Taiwan
e-mail: tshsiao@cn.nctu.edu.tw

Mao-Chiao Weng

Institute of Electrical and Control Engineering,
National Chiao Tung University,
1001 Ta Hsueh Road,
Hsinchu, 30010, Taiwan
e-mail: mchiao.weng@gmail.com

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received May 25, 2010; final manuscript received December 11, 2012; published online March 28, 2013. Editor: J. Karl Hedrick.

J. Dyn. Sys., Meas., Control 135(3), 031010 (Mar 28, 2013) (11 pages) Paper No: DS-10-1138; doi: 10.1115/1.4023669 History: Received May 25, 2010; Revised December 11, 2012

Most manipulator motion controllers require joint velocity feedback. Whenever joint velocities are not measurable, they are estimated from the joint positions. However, velocity estimates tend to be inaccurate under low-speed motion or low sensor resolution conditions. Moreover, velocity estimators may either be susceptible to model uncertainties or introduce additional dynamics (e.g., phase lag) to the control loop. Consequently, direct substitution of velocity estimates into the controller results in the deterioration of the control performance and robustness margin. Therefore, this paper proposes a robust position-feedback motion controller which gets rid of the problems of uncompensated dynamics and model uncertainties introduced by velocity estimators. Furthermore, a globally asymptotically stable system, which is robust with respective to model parameter variations, is guaranteed. Theoretical analysis and experimental verifications are carried out. The results demonstrate that the proposed controller is robust and outperforms the conventional computed torque plus proportional integral differential (PID) controller.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Abdallah, C., Dawson, D. M., Dorato, P., and Jamshidi, M., 1991, “Survey of Robust Control for Rigid Robots,” IEEE Control Syst. Mag., 11(2), pp. 24–30. [CrossRef]
Sage, H. G., Mathelin, M. F. D., and Ostertag, E., 1999, “Robust Control of Robot Manipulators: A Survey,” Int. J. Control, 72(16), pp. 1498–1522. [CrossRef]
Kreutz, K., 1989, “On Manipulator Control by Exact Linearization,” IEEE Trans. Autom. Control, 34(7), pp. 763–767. [CrossRef]
Islam, S., and Liu, P. X., 2011, “PD Output Feedback Control Design for Industrial Robotic Manipulators,” IEEE/ASME Trans. Mechatron., 16(1), pp. 187–197. [CrossRef]
Moosavian, S. A. A., and Papadopoulos, E., 2007, “Modified Transpose Jacobian Control of Robotic Systems,” Automatica, 43(7), pp. 1226–1233. [CrossRef]
Bevly, D., Dubowsky, S., and Mavroidis, C., 2000, “A Simplified Cartesian-Computed Torque Controller for Highly Geared Systems and Its Application to an Experimental Climbing Robot,” ASME J. Dyn. Sys., Meas., Control, 122(1), pp. 27–32. [CrossRef]
Kelly, R., and Moreno, J., 2005, “Manipulator Motion Control in Operational Space Using Joint Velocity Inner Loops,” Automatica, 41(8), pp. 1423–1432. [CrossRef]
Spong, M. W., 1992, “On the Robust Control of Robot Manipulators,” IEEE Trans. Autom. Control, 37(11), pp. 1782–1786. [CrossRef]
Qu, Z., 1992, “Robust Control of a Class of Nonlinear Uncertain Systems,” IEEE Trans. Autom. Control, 37(9), pp. 1437–1442. [CrossRef]
Craig, J. J., Hsu, P., and Sastry, S. S., 1987, “Adaptive Control of Mechanical Manipulators,” Int. J. Robot. Res., 6(2), pp. 16–28. [CrossRef]
Ortega, R., and Spong, M. W., 1989, “Adaptive Motion Control of Rigid Robots: A Tutorial,” Automatica, 25(6), pp. 877–888. [CrossRef]
Spong, M. W., and Ortega, R., 1990, “On Adaptive Inverse Dynamics Control of Rigid Robots,” IEEE Trans. Autom. Control, 35(1), pp. 92–93. [CrossRef]
Slotine, J.-J. E., and Li, W., 1988, “Adaptive Manipulator Control: A Case Study,” IEEE Trans. Autom. Control, 33(11), pp. 995–1003. [CrossRef]
Slotine, J.-J. E., and Li, W., 1987, “On the Adaptive Control of Robot Manipulators,” Int. J. Robot. Res., 6(3), pp. 49–59. [CrossRef]
Chiu, C.-S., Lian, K.-Y., and Wu, T.-C., 2004, “Robust Adaptive Motion/Force Tracking Control Design for Uncertain Constrained Robot Manipulators,” Automatica, 40(12), pp. 2111–2119. [CrossRef]
Slotine, J. J. E., and Sastry, S. S., 1983, “Tracking Control of Non-Linear Systems Using Sliding Surfaces With Application to Robot Manipulators,” Int. J. Control, 38(2), pp. 465–492. [CrossRef]
Yeung, K. S., and Chen, Y. P., 1988, “A New Controller Design for Manipulators Using the Theory of Variable Structure Systems,” IEEE Trans. Autom. Control, 33(2), pp. 200–206. [CrossRef]
Chen, Y.-F., Mita, T., and Wakui, S., 1990, “A New and Simple Algorithm for Sliding Mode Trajectory Control of the Robot Arm,” IEEE Trans. Autom. Control, 35(7), pp. 828–829. [CrossRef]
Zhihong, M., Paplinski, A. P., and Wu, H. R., 1994, “A Robust MIMO Terminal Sliding Mode Control Scheme for Rigid Robotic Manipulators,” IEEE Trans. Autom. Control, 39(12), pp. 2464–2469. [CrossRef]
Moura, J. T., Roy, R. G., and Olgac, N., 1997, “Frequency-Shaped Sliding Modes: Analysis and Experiments,” IEEE Trans. Control Syst. Technol., 5(4), pp. 394–401. [CrossRef]
Yu, W.-S., and Chen, Y.-H., 2005, “Decoupled Variable Structure Control Design for Trajectory Tracking on Mechatronic Arms,” IEEE Trans. Control Syst. Technol., 13(5), pp. 798–806. [CrossRef]
Kelly, R., 1993, “A Simple Set-Point Robot Controller by Using Only Position Measurements,” IFAC 12th Triennial World Congress, Sydney, Australia, pp. 527–530.
Berghuis, H., and Nijmeijer, H., 1993, “Global Regulation of Robots Using Only Position Measurements,” Syst. Control Lett., 21(4), pp. 289–293. [CrossRef]
Tayebi, A., and Islam, S., 2006, “Adaptive Iterative Learning Control for Robot Manipulators: Experimental Results,” Control Eng. Pract., 14(7), pp. 843–851. [CrossRef]
Namvar, M., 2009, “A Class of Globally Convergent Velocity Observers for Robotic Manipulators,” IEEE Trans. Autom. Control, 54(8), pp. 1956–1961. [CrossRef]
Jeon, S., Tomizuka, M., and Katou, T., 2009, “Kinematic Kalman Filter (KKF) for Robot End-Effector Sensing,” ASME J. Dyn. Sys., Meas., Control, 131(2), p. 021010. [CrossRef]
Zhu, W.-H., and Lamarche, T., 2007, “Velocity Estimation by Using Position and Acceleration Sensors,” IEEE Trans. Ind. Electron., 54(5), pp. 2706–2715. [CrossRef]
Su, Y. X., Zheng, C. H., Mueller, P. C., and Duan, B. Y., 2006, “A Simple Improved Velocity Estimation for Low-Speed Regions Based on Position Measurements Only,” IEEE Trans. Control Syst. Technol., 14(5), pp. 937–942. [CrossRef]
Wit, C. C. D., and Fixot, N., 1991, “Robot Control via Robust Estimated State Feedback,” IEEE Trans. Autom. Control, 36(12), pp. 1497–1501. [CrossRef]
Martinez-Guerra, R., Poznyak, A., Gortcheva, E., and Leon, V. D. D., 2000, “Robot Angular Link Velocity Estimation in the Presence of High-Level Mixed Uncertainties,” IEEE Proc.: Control Theory Appl., 147(5), pp. 515–522. [CrossRef]
Arteaga, M. A., 2003, “Robot Control and Parameter Estimation With Only Joint Position Measurements,” Automatica, 39(1), pp. 67–73. [CrossRef]
Kaneko, K., and Horowitz, R., 1997, “Repetitive and Adaptive Control of Robot Manipulators With Velocity Estimation,” IEEE Trans. Robot. Autom., 13(2), pp. 204–217. [CrossRef]
Zhu, W.-H., Chen, H.-T., and Zhang, Z.-J., 1992, “A Variable Structure Robot Control Algorithm With an Observer,” IEEE Trans. Robot. Autom., 8(4), pp. 486–492. [CrossRef]
Kelly, R., Santibanez, V., and Loria, A., 2005, Control of Robot Manipulators in Joint Space, Springer, New York.
Doyle, J. C., Glover, K., Khargonekar, P. P., and Francis, B. A., 1989, “State-Space Solutions to Standard H2 and H Control Problems,” IEEE Trans. Autom. Control, 34(8), pp. 831–847. [CrossRef]
Yuz, J. I., and Salgado, M. E., 2003, “From Classical to State-Feedback-Based Controllers,” IEEE Control Syst. Mag., 23(4), pp. 58–67. [CrossRef]
Khargonekar, P. P., Petersen, I. R., and Rotea, M. A., 1988, “H-Optimal Control With State-Feedback,” IEEE Trans. Autom. Control, 33(8), pp. 786–788. [CrossRef]
Doyle, J. C., 1978, “Guaranteed Margins for LQG Regulators,” IEEE Trans. Autom. Control, 23(4), pp. 756–757. [CrossRef]
Anderson, B. D. O., and Moore, J. B., 1990, Optimal Control: Linear Quadratic Methods, Prentice Hall, Englewood Cliffs, NJ.
Chilali, M., and Gahinet, P., 1996, “H Design With Pole Placement Constraints: An LMI,” IEEE Trans. Autom. Control, 41(3), pp. 358–367. [CrossRef]
Khargonekar, P. P., and Rotea, M. A., 1991, “Mixed H2/H Control: A Convex Optimization Approach,” IEEE Trans. Autom. Control, 36(7), pp. 824–837. [CrossRef]
Leitmann, G., 1979, “Guaranteed Asymptotic Stability for Some Linear Systems With Bounded Uncertainties,” ASME J. Dyn. Sys., Meas., Control, 101(3), pp. 212–216. [CrossRef]
Ioannou, P. A., and Sun, J., 1996, Robust Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ.
Franklin, G. F., Powell, J. D., and Workman, M. L., 1990, Digital Control of Dynamic Systems, Addison-Wesley, Reading, MA.
Desoer, C. A., and Vidyasagar, M., 1975, Feedback Systems: Input-Output Properties, Academic, New York.
Ljung, L., 1999, System Identification: Theory for the User, Prentice Hall PTR, Englewood Cliffs, NJ.
Padthe, A. K., Drincic, B., Oh, J., Rizos, D. D., Fassois, S. D., and Bernstein, D. S., 2008, “Duhem Modeling of Friction-Induced Hysteresis,” IEEE Control Syst. Mag., 28(5), pp. 90–107. [CrossRef]


Grahic Jump Location
Fig. 1

The augmented system and the linear controller

Grahic Jump Location
Fig. 2

Schema of the two-joint planar manipulator (left). Photograph of the manipulator (right).

Grahic Jump Location
Fig. 3

The desired path of the tip of the 2nd link in the task space

Grahic Jump Location
Fig. 4

Experimental results. Solid line (—): τPID; dashed line (- - -): τLin + τLC; dotted line (.): τLin + τLC + τNC; dash-dotted line (- · -): desired trajectory. (a), (b) Positions of the 1st and 2nd joints. (c), (d) Armature voltages of the 1st and 2nd joints.

Grahic Jump Location
Fig. 5

Position tracking errors. Solid line (—): τPID; dashed line (- - -): τLin + τLC; dotted line (· · ·): τLin + τLC + τNC; (a) 1st joint: t = 0–20 s, (b) 2nd joint: t = 0–20 s, (c) 1st joint: t = 8–12 s, and (d) 2nd joint: t = 8–12 s.

Grahic Jump Location
Fig. 6

Experimental results when m2 increases 33%. Solid line (—): τPID; dashed line (- - -): τLin + τLC; dotted line (· · ·): τLin + τLC + τNC; dash dotted line (- · -): desired trajectory. (a),(b) Positions of the 1st and 2nd joints. (c), (d) Armature voltages of the 1st and 2nd joints.

Grahic Jump Location
Fig. 7

Position tracking errors when m2 increases 33%. Solid line (—): τPID; dashed line (- - -): τLin + τLC; dotted line (.): τLin + τLC + τNC; (a) 1st joint: t = 0–20 s, (b) 2nd joint: t = 0–20 s, (c) 1st joint: t = 8–12 s, and (d) 2nd joint: t = 8–12 s.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In