0
Research Papers

Admissible Finite-Time Stability and Stabilization of Uncertain Discrete Singular Systems

[+] Author and Article Information
Wenping Xue

Institute of Cyber-Systems and Control,
Zhejiang University,
Hangzhou 310027, China;
School of Electrical and Information Engineering,
Jiangsu University, Zhenjiang 212013, China
e-mail: xwping@zju.edu.cn

Weijie Mao

Institute of Cyber-Systems and Control,
Zhejiang University,
Hangzhou 310027, China
e-mail: wjmao@iipc.zju.edu.cn

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the Journal of Dynamic Systems, Measurement, and Control. Manuscript received May 3, 2012; final manuscript received December 6, 2012; published online March 28, 2013. Assoc. Editor: Bor-Chin Chang.

J. Dyn. Sys., Meas., Control 135(3), 031018 (Mar 28, 2013) (6 pages) Paper No: DS-12-1127; doi: 10.1115/1.4023213 History: Received May 03, 2012; Revised December 06, 2012

The problems of admissible finite-time stability (AFTS) and admissible finite-time stabilization for a class of uncertain discrete singular systems are addressed in this study. The definition of AFTS is first given. Second, a sufficient condition for the AFTS of the nominal unforced system is established, which is further extended to the uncertain case. Then, a sufficient condition is proposed for the design of a state feedback controller such that the closed-loop system is admissibly finite-time stable for all admissible uncertainties. Both the AFTS and the controller design conditions are presented in terms of linear matrix inequalities (LMIs) with a fixed parameter. Finally, two numerical examples are provided to illustrate the effectiveness of the developed theory.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In