Stewart, D., 1965, “A Platform With Six Degrees of Freedom,” Proc. Inst. Mech. Eng., Part B, 180(15), pp. 371–386.
[CrossRef]Carretero, J. A., Podhorodeski, R. P., Nahon, M. A., and Gosselin, C. M., 2000, “Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator,” ASME J. Mech. Des., 122(1), pp. 17–24.
[CrossRef]Dunlopa, G. R., and Jonesa, T. P., 1999, “Position Analysis of a Two DOF Parallel Mechanism—The Canterbury Tracker,” Mech. Mach. Theory, 34(4), pp. 599–614.
[CrossRef]Lee, K. M., and Arjunan, S., 1991, “A Three-Degrees-of-Freedom Micromotion In-Parallel Actuated Manipulator,” IEEE Trans. Rob. Autom., 7(5), pp. 634–641.
[CrossRef]Huang, T., Li, Z., Li, M., Chetwynd, D., and Gosselin, C. M., 2004, “Conceptual Design and Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place Operations,” ASME J. Mech. Des., 126(3), pp. 449–455.
[CrossRef]Zhang, D., and Gosselin, C. M., 2002, “Kinetostatic Modeling of Parallel Mechanisms With A Passive Constraining Leg and Revolute Actuators,” Mech. Mach. Theory, 37(6), pp. 599–617.
[CrossRef]Do, W., and Yang, D., 1988, “Inverse Dynamic Analysis and Simulation of a Platform Type of Robot,” J. Rob. Syst., 5(3), pp. 209–227.
[CrossRef]Reboulet, C., and Berthomieu, T., 1991, “Dynamic Models of a Six Degree of Freedom Parallel Manipulators,” Proceedings of the 5th International Conference on Advanced Robotics, Pisa, Italy, pp. 1153–1157.
Dasgupta, B., and Mruthyunjaya, T. S., 1998, “A Newton-Euler Formulation for the Inverse Dynamics of The Stewart Platform Manipulator,” Mech. Mach. Theory, 33(8), pp. 1135–1152.
[CrossRef]Riebe, S., and Ulbrich, H., 2003, “Modelling and Online Computation of the Dynamics of a Parallel Kinematic With Six Degrees-of-Freedom,” Arch. Appl. Mech., 72, pp. 817–829.
Guo, H., and Li, H., 2006, “Dynamic Analysis and Simulation of a Six Degree of Freedom Stewart Platform Manipulator,” Proc. Inst. Mech. Eng., Part C, 220(1), pp. 61–72.
[CrossRef]Khalil, W., 2011, “Dynamic Modeling of Robots Using Newton-Euler Formulation,” Informatics in Control, Automation and Robotics, Lecture Notes in Electrical Engineering, Vol. 89, part 1, Springer, New York, pp. 3–20.
Nguyen, C., and Pooran, F., 1989, “Dynamic Analysis of a 6 DOF CKCM Robot End-Effector for Dual-Arm Telerobot Systems,” Rob. Auton. Syst., 5(4), pp. 377–394.
[CrossRef]Geng, Z., Haynes, L. S., Lee, J. D., and Carroll, R. L., 1992, “On the Dynamic Model and Kinematic Analysis of a Class of Stewart Platforms,” Rob. Auton. Syst., 9(4), pp. 237–254.
[CrossRef]Lebret, G., Liu, K., and Lewis, F., 1993, “Dynamic Analysis and Control of a Stewart Platform Manipulator,” J. Rob. Syst., 10(5), pp. 629–655.
[CrossRef]Liu, K., Lewis, F., Lebret, G., and Taylor, D., 1993, “The Singularities and Dynamics of a Stewart Platform Manipulator,” J. Intell. Robotic Syst., 8(3), pp. 287–308.
[CrossRef]Gregorio, R. D., and Parenti-Castelli, V., 2004, “Dynamics of a Class of Parallel Wrists,” ASME J. Mech. Des., 126(3), pp. 436–441.
[CrossRef]Driels, M. R., Fan, U. J., and Pathre, U. S., 1988, “The Application of Newton-Euler Recursive Methods to the Derivation of Closed Form Dynamic Equations,” J. Rob. Syst., 5(3), pp. 229–248.
[CrossRef]Yiu, Y. K., Cheng, H., Xiong, Z. H., Liu, G. F., and Li, Z. X., 2001, “On the Dynamics of Parallel Manipulators,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, South Korea, May, pp. 3766–3771.
Tsai, L. W., 2000, “Solving the Inverse Dynamics of Stewart-Gough Manipulator by The Principle of Virtual Work,” ASME J. Mech. Des., 122(1), pp. 3–9.
[CrossRef]Gallardo, J., Rico, J., Frisoli, A., Checcacci, D., and Bergamasco, M., 2003, “Dynamics of Parallel Manipulators by Means of Screw Theory,” Mech. Mach. Theory, 38(11), pp. 1113–1131.
[CrossRef]Miller, K., 2004, “Optimal Design and Modeling of Spatial Parallel Manipulators,” Int. J. Robot. Res., 23(2), pp. 127–140.
[CrossRef]Staicu, S., Liu, X. J., and Wang, J. S., 2007, “Inverse Dynamics of the Half Parallel Manipulator With Revolute Actuators,” Nonlinear Dyn., 50(1–2), pp. 1–12.
[CrossRef]Staicu, S., and Zhang, D., 2008, “A Novel Dynamic Modelling Approach for Parallel Mechanisms Analysis,” Rob. Comput.-Integr. Manufact., 24(1), pp. 167–172.
[CrossRef]Khalil, W., and Ibrahim, O., 2007, “General Solution for the Dynamic Modelling of Parallel Robots,” J. Intell. Robotic Syst., 49, pp. 19–37.
[CrossRef]Lopes, A.M. and Almeida, F., 2009, “The Generalized Momentum Approach to the Dynamic Modeling of A 6-DOF Parallel Manipulator,” Multibody Syst. Dyn., 21(2), pp. 123–146.
[CrossRef]Lopes, A. M., 2010, “Complete Dynamic Modelling of a Moving Base 6-DOF Parallel Manipulator,” Robotica, 28, pp. 781–793.
[CrossRef]Udwadia, F. E., and Kalaba, R. E., 1996, Analytical Dynamics: A New Approach, Cambridge University, Cambridge, UK.
Sivakumar, K. C., 2006, “Proof by Verification of the Greville/Udwadia/Kalaba Formula for the Moore-Penrose Inverse of a Matrix,” J. Optim. Theory Appl., 131(2), pp. 307–311.
[CrossRef]Rosenberg, R. M., 1977, Analytical Dynamics of Discrete Systems, Plenum, New York.
Chen, Y. H., 1998, “Pars's Acceleration Paradox,” J. Franklin Inst., 335B, pp. 871–875.
[CrossRef]Abraham, R., Marsden, J. E., and Ratiu, T., 1988, Manifolds, Tensor Analysis, and Applications, 2nd ed., Springer Verlag, New York.
Pars, L. A., 1965, A Treatise on Analytical Dynamics, Heinemann, London.
Papastavridis, J. G., 2002, Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; for Engineers, Physicists, and Mathematicians, Oxford University, New York.
Craig, J. J., 1989, Introduction to Robotics: Mechanics and Control, 2nd ed., Addison Wesley, MA.
Huang, J., Chen, Y. H., and Guo, K. H., 2011, “A Novel Cascade Approach to Multibody System Modeling,” Proceedings of the 13th IASTED International Conference on Control and Applications, CA, pp. 141–148.
Gosselin, C., and Angeles, J., 1990, “Singularity Analysis of Closed-Loop Kinematic-Chains,” IEEE Trans. Rob. Autom., 6(3), pp. 281–290.
[CrossRef]