In this paper, finite-time attitude coordinated control for spacecraft formation flying (SFF) subjected to input saturation is investigated. More specifically, a bounded finite-time state feedback control law is first developed with the assumption that both attitude and angular velocity signals can be measured and transmitted between formation members. Then, a bounded finite-time output feedback controller is designed with the addition of a filter, which removes the requirement of the angular velocity measurements. In both cases, actuator saturation is explicitly taken into account, and the homogeneous system method is employed to demonstrate the finite-time stability of the closed-loop system. Numerical simulation results are presented to illustrate the efficiency of the proposed control schemes.