Ortigueira,
M. D.
, 2011, Fractional Calculus for Scientists and Engineers, Lecture Notes in Electrical Engineering, Vol.
84,
Springer,
Dordrecht.

Kilbas,
A. A.
,
Srivastava,
H. M.
, and
Trujillo,
J. J.
, 2006, Theory and Applications of Fractional Differential Equations,
Elsevier,
Amsterdam, The Netherlands.

Monje,
C. A.
,
Chen,
Y. Q.
,
Vinagre,
B. M.
,
Xue,
D.
, and
Feliu,
V.
, 2010, Fractional-Order Systems and Controls: Fundamentals and Applications,
Advanced Industrial Control Series, Springer-Verlag,
London.

Tavazoei,
M. S.
, 2014, “
Time Response Analysis of Fractional-Order Control Systems: A Survey on Recent Results,” Fract. Calculus Appl. Anal.,
17(2), pp. 440–461.

Podlubny,
I.
, 1999, “
Fractional-Order Systems and PI

^{λ}D

^{μ}-Controllers,” IEEE Trans. Autom. Control,
44(1), pp. 208–214.

[CrossRef]
Tavazoei,
M. S.
, 2012, “
From Traditional to Fractional PI Control: A Key for Generalization,” IEEE Ind. Electron. Mag.,
6(3), pp. 41–51.

[CrossRef]
Tavazoei,
M. S.
, and
Tavakoli-Kakhki,
M.
, 2014, “
Compensation by Fractional-Order Phase-Lead/Lag Compensators,” IET Control Theory Appl.,
8, pp. 319–329.

[CrossRef]
Feliu-Batlle,
N.
,
Rivas Pérez,
R.
,
Castillo García,
F. G.
, and
Sanchez Rodriguez,
L.
, 2009, “
Smith Predictor Based Robust Fractional-Order Control: Application to Water Distribution in a Main Irrigation Canal Pool,” J. Process Control,
19(3), pp. 506–519.

[CrossRef]
Tavakoli-Kakhki,
M.
,
Haeri,
M.
, and
Tavazoei,
M. S.
, 2010, “
Simple Fractional Order Model Structures and Their Applications in Control System Design,” Eur. J. Control,
16(6), pp. 680–694.

[CrossRef]
Bettayeb,
M.
, and
Mansouri,
R.
, 2014, “
Fractional IMC-PID-Filter Controllers Design for Non Integer Order Systems,” J. Process Control,
24(4), pp. 261–271.

[CrossRef]
Wang,
D. J.
, and
Gao,
X. L.
, 2012, “

*H*_{∞} Design With Fractional-Order

*PD*^{μ} Controllers,” Automatica,
48(5), pp. 974–977.

[CrossRef]
Padula,
F.
,
Alcántara,
S.
,
Vilanova,
R.
, and
Visioli,
A.
, 2013, “

*H*_{∞} Control of Fractional Linear Systems,” Automatica,
49(7), pp. 2276–2280.

[CrossRef]
Maione,
G.
, 2011, “
High-Speed Digital Realizations of Fractional Operators in the Delta Domain,” IEEE Trans. Autom. Control,
56(3), pp. 697–702.

[CrossRef]
Chen,
Y. Q.
, and
Moore,
K. L.
, 2002, “
Discretization Schemes for Fractional-Order Differentiators and Integrators,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.,
49(3), pp. 363–367.

[CrossRef]
Maione,
G.
, 2013, “
Closed-Form Rational Approximations of Fractional, Analog and Digital Differentiators/Integrators,” IEEE J. Emerging Sel. Top. Circuits Syst.,
3(3), pp. 322–329.

[CrossRef]
Butler,
H.
, and
Hoon,
C.
, 2013, “
Fractional-Order Filters for Active Damping in a Lithographic Tool,” Control Eng. Pract.,
21(4), pp. 413–419.

[CrossRef]
Chao,
H.
,
Luo,
Y.
,
Di,
L.
, and
Chen,
Y. Q.
, 2010, “
Roll-Channel Fractional Order Controller Design for a Small Fixed-Wing Unmanned Aerial Vehicle,” Control Eng. Pract.,
18(7), pp. 761–772.

[CrossRef]
Maachou,
A.
,
Malti,
R.
,
Melchior,
P.
,
Battaglia,
J. L.
,
Oustaloup,
A.
, and
Hay,
B.
, 2014, “
Nonlinear Thermal System Identification Using Fractional Volterra Series,” Control Eng. Pract.,
29, pp. 50–60.

[CrossRef]
Rhouma,
A.
,
Bouani,
F.
,
Bouzouita,
B.
, and
Ksouri,
M.
, 2014, “
Model Predictive Control of Fractional Order Systems,” ASME J. Comput. Nonlinear Dyn.,
9(3), p. 031011.

[CrossRef]
Tavazoei,
M. S.
,
Haeri,
M.
,
Jafari,
S.
,
Bolouki,
S.
, and
Siami,
M.
, 2008, “
Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations,” IEEE Trans. Ind. Electron.,
55(11), pp. 4094–4101.

[CrossRef]
Luo,
Y.
,
Chen,
Y. Q.
,
Ahn,
H. S.
, and
Pi,
Y.
, 2010, “
Fractional Order Robust Control for Cogging Effect Compensation in PMSM Position Servo Systems: Stability Analysis and Experiments,” Control Eng. Pract.,
18(9), pp. 1022–1036.

[CrossRef]
Luo,
Y.
, and
Chen,
Y. Q.
, 2012, Fractional Order Motion Controls,
Wiley,
Chichester.

Haeri,
M.
, and
Tavazoei,
M. S.
, 2011, “
CDM Based Closed Loop Transfer Function Design for Ramp Input,” Trans. Inst. Meas. Control,
33(5), pp. 558–574.

[CrossRef]
Freudenberg,
J. S.
, and
Looze,
D. P.
, 1985, “
Right Half Plane Poles and Zeros and Design Tradeoffs in Feedback Systems,” IEEE Trans. Autom. Control,
30(6), pp. 555–565.

[CrossRef]
Chen,
J.
,
Qiu,
L.
, and
Toker,
O.
, 2000, “
Limitations on Maximal Tracking Accuracy,” IEEE Trans. Autom. Control,
45(2), pp. 326–331.

[CrossRef]
Qiu,
L.
, and
Davison,
E. J.
, 1993, “
Performance Limitations of Nonminimum Phase Systems in the Servomechanism Problem,” Automatica,
29(2), pp. 337–349.

[CrossRef]
Power,
H. M.
, 1978, “
Stability Problems in Using State Variable Feedback to Produce a Servomechanism of Specified Type Number,” Int. J. Control,
27(1), pp. 31–48.

[CrossRef]
O'Malley,
M.
, 1991, “
Algorithm to Produce a System of Type Number

*m* Using State Variable Feedback,” IEE Proc. D,
138(3), pp. 193–198.

[CrossRef]
Štecha,
J.
, 1998, “
Robust and Non Robust Tracking,” Kybernetika,
34, pp. 203–216.

Tavazoei,
M. S.
, 2013, “
On Type Number Concept in Fractional-Order Systems,” Automatica,
49(1), pp. 301–304.

[CrossRef]
Bonnet,
C.
, and
Partington,
J. R.
, 2000, “
Coprime Factorizations and Stability of Fractional Differential Systems,” Syst. Control Lett.,
41(3), pp. 167–174.

[CrossRef]
Matignon,
D.
, 1998, “
Stability Properties for Generalized Fractional Differential Systems,” ESIAM Proc.,
5, pp. 145–158.

[CrossRef]
Chen,
J.
,
Lundberg,
K. H.
,
Davison,
D. E.
, and
Bernstein,
D. S.
, 2007, “
The Final Value Theorem Revisited Infinite Limits and Irrational Functions,” IEEE Control Syst. Mag.,
27(3), pp. 97–99.

[CrossRef]
Silva,
G. J.
,
Datta,
A.
, and
Bhattachaiyya,
S. P.
, 2005, PID Controllers for Time-Delay Systems,
Birkhäuser,
Boston, MA.

Cao,
Y. Y.
,
Sun,
Y. X.
, and
Mao,
W. J.
, 1998, “
A New Necessary and Sufficient Condition for Static Output Feedback Stabilizability and Comments on “Stabilization via Static Output Feedback”,” IEEE Trans. Autom. Control,
43(8), pp. 1110–1111.

[CrossRef]
Kucera,
V.
, and
De Souza,
C. E.
, 1995, “
A Necessary and Sufficient Condition Feedback Stabilizability,” Automatica,
31(9), pp. 1357–1359.

[CrossRef]
Gopal,
M.
, 1993, Modern Control System Theory, 2nd ed.,
Wiley,
New York.

Williams II,
R. L.
, and
Lawrence,
D. A.
, 2007, Linear State-Space Control Systems,
Wiley,
Hoboken, NJ.

Diethelm,
K.
,
Ford,
N. J.
, and
Freed,
A. D.
, 2002, “
A Predictor Corrector Approach for the Numerical Solution of Fractional Differential Equations,” Nonlinear Dyn.,
29, pp. 3–22.

[CrossRef]
Chen,
B. M.
,
Saberi,
A.
, and
Sannuti,
P.
, 1992, “
Necessary and Sufficient Conditions for a Nonminimum Phase Plant to Have a Recoverable Target Loop a Stable Compensator Design for LTR,” Automatica,
28(3), pp. 493–507.

[CrossRef]
Consolini,
L.
, and
Piazzi,
A.
, 2009, “
Generalized Bang-Bang Control for Feedforward Constrained Regulation,” Automatica,
45(10), pp. 2234–2243.

[CrossRef]
Power,
H. M.
, 1973, “
General Strategy for Increasing Type Number of Control Systems,” Electron. Lett.,
9(26), pp. 614–616.

[CrossRef]
Astolfi,
A.
, and
Colaneri,
P.
, 2000, “
Static Output Feedback Stabilization of Linear and Nonlinear Systems,” 39th IEEE Conference on Decision and Control,
Sydney,
Australia, Vol.
3, pp. 2920–2925.

Schrodel,
F.
,
Maschuw,
J.
, and
Abel,
D.
, 2012, “
An Approach for Calculating All Stable PID Parameters for Time Delay Systems With Uncertain Parameters,” IFAC Conference on Advances in PID Control,
Brescia,
Italy, Mar. 28–30, pp. 739–744.