Research Papers

Ramp Tracking in Systems With Nonminimum Phase Zeros: One-and-a-Half Integrator Approach

[+] Author and Article Information
Mohammad Saleh Tavazoei

Electrical Engineering Department,
Sharif University of Technology,
Tehran 1458889694, Iran
e-mail: tavazoei@sharif.edu

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received June 13, 2014; final manuscript received November 30, 2015; published online January 12, 2016. Assoc. Editor: Luis Alvarez.

J. Dyn. Sys., Meas., Control 138(3), 031002 (Jan 12, 2016) (7 pages) Paper No: DS-14-1253; doi: 10.1115/1.4032317 History: Received June 13, 2014; Revised November 30, 2015

In this paper, a simple fractional calculus-based control law is proposed for asymptotic tracking of ramp reference inputs in dynamical systems. Without need to add any zero to the loop transfer function, the proposed technique can guarantee asymptotic ramp tracking in plants having nonminimum phase zeros. The appropriate range for determining the parameters of the proposed control law is also specified. Moreover, the performance of the designed control system in tracking ramp reference inputs is illustrated by different numerical examples.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Ortigueira, M. D. , 2011, Fractional Calculus for Scientists and Engineers, Lecture Notes in Electrical Engineering, Vol. 84, Springer, Dordrecht.
Kilbas, A. A. , Srivastava, H. M. , and Trujillo, J. J. , 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands.
Monje, C. A. , Chen, Y. Q. , Vinagre, B. M. , Xue, D. , and Feliu, V. , 2010, Fractional-Order Systems and Controls: Fundamentals and Applications, Advanced Industrial Control Series, Springer-Verlag, London.
Tavazoei, M. S. , 2014, “ Time Response Analysis of Fractional-Order Control Systems: A Survey on Recent Results,” Fract. Calculus Appl. Anal., 17(2), pp. 440–461.
Podlubny, I. , 1999, “ Fractional-Order Systems and PIλDμ-Controllers,” IEEE Trans. Autom. Control, 44(1), pp. 208–214. [CrossRef]
Tavazoei, M. S. , 2012, “ From Traditional to Fractional PI Control: A Key for Generalization,” IEEE Ind. Electron. Mag., 6(3), pp. 41–51. [CrossRef]
Tavazoei, M. S. , and Tavakoli-Kakhki, M. , 2014, “ Compensation by Fractional-Order Phase-Lead/Lag Compensators,” IET Control Theory Appl., 8, pp. 319–329. [CrossRef]
Feliu-Batlle, N. , Rivas Pérez, R. , Castillo García, F. G. , and Sanchez Rodriguez, L. , 2009, “ Smith Predictor Based Robust Fractional-Order Control: Application to Water Distribution in a Main Irrigation Canal Pool,” J. Process Control, 19(3), pp. 506–519. [CrossRef]
Tavakoli-Kakhki, M. , Haeri, M. , and Tavazoei, M. S. , 2010, “ Simple Fractional Order Model Structures and Their Applications in Control System Design,” Eur. J. Control, 16(6), pp. 680–694. [CrossRef]
Bettayeb, M. , and Mansouri, R. , 2014, “ Fractional IMC-PID-Filter Controllers Design for Non Integer Order Systems,” J. Process Control, 24(4), pp. 261–271. [CrossRef]
Wang, D. J. , and Gao, X. L. , 2012, “ H Design With Fractional-Order PDμ Controllers,” Automatica, 48(5), pp. 974–977. [CrossRef]
Padula, F. , Alcántara, S. , Vilanova, R. , and Visioli, A. , 2013, “ H Control of Fractional Linear Systems,” Automatica, 49(7), pp. 2276–2280. [CrossRef]
Maione, G. , 2011, “ High-Speed Digital Realizations of Fractional Operators in the Delta Domain,” IEEE Trans. Autom. Control, 56(3), pp. 697–702. [CrossRef]
Chen, Y. Q. , and Moore, K. L. , 2002, “ Discretization Schemes for Fractional-Order Differentiators and Integrators,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 49(3), pp. 363–367. [CrossRef]
Maione, G. , 2013, “ Closed-Form Rational Approximations of Fractional, Analog and Digital Differentiators/Integrators,” IEEE J. Emerging Sel. Top. Circuits Syst., 3(3), pp. 322–329. [CrossRef]
Butler, H. , and Hoon, C. , 2013, “ Fractional-Order Filters for Active Damping in a Lithographic Tool,” Control Eng. Pract., 21(4), pp. 413–419. [CrossRef]
Chao, H. , Luo, Y. , Di, L. , and Chen, Y. Q. , 2010, “ Roll-Channel Fractional Order Controller Design for a Small Fixed-Wing Unmanned Aerial Vehicle,” Control Eng. Pract., 18(7), pp. 761–772. [CrossRef]
Maachou, A. , Malti, R. , Melchior, P. , Battaglia, J. L. , Oustaloup, A. , and Hay, B. , 2014, “ Nonlinear Thermal System Identification Using Fractional Volterra Series,” Control Eng. Pract., 29, pp. 50–60. [CrossRef]
Rhouma, A. , Bouani, F. , Bouzouita, B. , and Ksouri, M. , 2014, “ Model Predictive Control of Fractional Order Systems,” ASME J. Comput. Nonlinear Dyn., 9(3), p. 031011. [CrossRef]
Tavazoei, M. S. , Haeri, M. , Jafari, S. , Bolouki, S. , and Siami, M. , 2008, “ Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations,” IEEE Trans. Ind. Electron., 55(11), pp. 4094–4101. [CrossRef]
Luo, Y. , Chen, Y. Q. , Ahn, H. S. , and Pi, Y. , 2010, “ Fractional Order Robust Control for Cogging Effect Compensation in PMSM Position Servo Systems: Stability Analysis and Experiments,” Control Eng. Pract., 18(9), pp. 1022–1036. [CrossRef]
Luo, Y. , and Chen, Y. Q. , 2012, Fractional Order Motion Controls, Wiley, Chichester.
Haeri, M. , and Tavazoei, M. S. , 2011, “ CDM Based Closed Loop Transfer Function Design for Ramp Input,” Trans. Inst. Meas. Control, 33(5), pp. 558–574. [CrossRef]
Freudenberg, J. S. , and Looze, D. P. , 1985, “ Right Half Plane Poles and Zeros and Design Tradeoffs in Feedback Systems,” IEEE Trans. Autom. Control, 30(6), pp. 555–565. [CrossRef]
Chen, J. , Qiu, L. , and Toker, O. , 2000, “ Limitations on Maximal Tracking Accuracy,” IEEE Trans. Autom. Control, 45(2), pp. 326–331. [CrossRef]
Qiu, L. , and Davison, E. J. , 1993, “ Performance Limitations of Nonminimum Phase Systems in the Servomechanism Problem,” Automatica, 29(2), pp. 337–349. [CrossRef]
Power, H. M. , 1978, “ Stability Problems in Using State Variable Feedback to Produce a Servomechanism of Specified Type Number,” Int. J. Control, 27(1), pp. 31–48. [CrossRef]
O'Malley, M. , 1991, “ Algorithm to Produce a System of Type Number m Using State Variable Feedback,” IEE Proc. D, 138(3), pp. 193–198. [CrossRef]
Štecha, J. , 1998, “ Robust and Non Robust Tracking,” Kybernetika, 34, pp. 203–216.
Tavazoei, M. S. , 2013, “ On Type Number Concept in Fractional-Order Systems,” Automatica, 49(1), pp. 301–304. [CrossRef]
Bonnet, C. , and Partington, J. R. , 2000, “ Coprime Factorizations and Stability of Fractional Differential Systems,” Syst. Control Lett., 41(3), pp. 167–174. [CrossRef]
Matignon, D. , 1998, “ Stability Properties for Generalized Fractional Differential Systems,” ESIAM Proc., 5, pp. 145–158. [CrossRef]
Chen, J. , Lundberg, K. H. , Davison, D. E. , and Bernstein, D. S. , 2007, “ The Final Value Theorem Revisited Infinite Limits and Irrational Functions,” IEEE Control Syst. Mag., 27(3), pp. 97–99. [CrossRef]
Silva, G. J. , Datta, A. , and Bhattachaiyya, S. P. , 2005, PID Controllers for Time-Delay Systems, Birkhäuser, Boston, MA.
Cao, Y. Y. , Sun, Y. X. , and Mao, W. J. , 1998, “ A New Necessary and Sufficient Condition for Static Output Feedback Stabilizability and Comments on “Stabilization via Static Output Feedback”,” IEEE Trans. Autom. Control, 43(8), pp. 1110–1111. [CrossRef]
Kucera, V. , and De Souza, C. E. , 1995, “ A Necessary and Sufficient Condition Feedback Stabilizability,” Automatica, 31(9), pp. 1357–1359. [CrossRef]
Gopal, M. , 1993, Modern Control System Theory, 2nd ed., Wiley, New York.
Williams II, R. L. , and Lawrence, D. A. , 2007, Linear State-Space Control Systems, Wiley, Hoboken, NJ.
Diethelm, K. , Ford, N. J. , and Freed, A. D. , 2002, “ A Predictor Corrector Approach for the Numerical Solution of Fractional Differential Equations,” Nonlinear Dyn., 29, pp. 3–22. [CrossRef]
Chen, B. M. , Saberi, A. , and Sannuti, P. , 1992, “ Necessary and Sufficient Conditions for a Nonminimum Phase Plant to Have a Recoverable Target Loop a Stable Compensator Design for LTR,” Automatica, 28(3), pp. 493–507. [CrossRef]
Consolini, L. , and Piazzi, A. , 2009, “ Generalized Bang-Bang Control for Feedforward Constrained Regulation,” Automatica, 45(10), pp. 2234–2243. [CrossRef]
Power, H. M. , 1973, “ General Strategy for Increasing Type Number of Control Systems,” Electron. Lett., 9(26), pp. 614–616. [CrossRef]
Astolfi, A. , and Colaneri, P. , 2000, “ Static Output Feedback Stabilization of Linear and Nonlinear Systems,” 39th IEEE Conference on Decision and Control, Sydney, Australia, Vol. 3, pp. 2920–2925.
Schrodel, F. , Maschuw, J. , and Abel, D. , 2012, “ An Approach for Calculating All Stable PID Parameters for Time Delay Systems With Uncertain Parameters,” IFAC Conference on Advances in PID Control, Brescia, Italy, Mar. 28–30, pp. 739–744.


Grahic Jump Location
Fig. 2

A feedback control system with control law (7) (r: reference input, d: disturbance, and y: plant output)

Grahic Jump Location
Fig. 6

A unity negative feedback control system

Grahic Jump Location
Fig. 3

Stability region discussed in the proof of Theorem 1 (The considered control system is BIBO stable if and only if all roots of polynomial (11) are placed in the specified region {s|s∈C & |arg(s)|>π/4})

Grahic Jump Location
Fig. 4

All roots of polynomial D(s2) are placed in the specified region {s|s∈C & π/4<|arg(s)|<3π/4}

Grahic Jump Location
Fig. 5

The loci of the three roots of P(s) approaching to the origin where ki tends to zero and its sign is coincident with information of Table 1

Grahic Jump Location
Fig. 1

A feedback control system with control law (4) (r: reference input, u: control input, and y: plant output)

Grahic Jump Location
Fig. 12

Reference input (r(t)=t) and output (y(t)) in control system of Example 3 where kp=1.45 and ki=−0.12

Grahic Jump Location
Fig. 13

Reference input (r(t)=t0.9) and output (y(t)) in control system of Example 4 where ki=0.08

Grahic Jump Location
Fig. 14

Reference input (r(t)=t0.9) and output (y(t)) in control system of Fig. 6 where G(s) and Gc(s) are, respectively, given by Eqs. (30) and (12) with (k1,k2)=(0.5,0.03)

Grahic Jump Location
Fig. 7

Choosing the parameters of control law (25) in the gray region guarantees asymptotic tracking of ramp reference inputs in system (24)

Grahic Jump Location
Fig. 8

Reference input (r(t)=t) and output (y(t)) in control system of Example 1 where (k1−ki)=(2,−0.08)

Grahic Jump Location
Fig. 9

Structure of the precompensator proposed in Ref. [42]

Grahic Jump Location
Fig. 10

Reference input (r(t)=t) and output (y(t)) in control system of Fig. 9 where G(s), P(s), and μ are, respectively, given by Eqs. (26)(28), and ρ=5 (a): in the nominal case; (b): in the presence of system parameter variation (It is assumed that the nonminimum phase of the plant is located at s=4 instead of s=3.5)

Grahic Jump Location
Fig. 11

Reference input (r(t)=t) and output (y(t)) in control system of Example 2 where ki=0.02 (a): in the nominal case; (b): in the presence of system parameter variation (it is assumed that the nonminimum phase of the plant is located at s=4 instead of s=3.5) and the external ramp disturbance d(t)=0.1(t−70) for t≥70




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In