Anderson,
R.
, and
Spong,
M.
, 1989, “
Bilateral Control of Teleoperators With Time Delay,” IEEE Trans. Autom. Control,
34(5), pp. 494–501.

[CrossRef]
Bejczy,
A.
,
Kim,
W.
, and
Venema,
W.
, 1990, “
The Phantom Robot: Predictive Displays for Teleoperation With Time Delay,” IEEE International Conference on Robotics and Automation, Cincinnati, OH, May 13–18, pp. 546–551.

Leung,
G.
,
Francis,
B.
, and
Apkarian,
J.
, 1995, “
Bilateral Controller for Teleoperators With Time Delay Via μ-Synthesis,” IEEE Trans. Rob. Autom.,
11(1), pp. 105–116.

[CrossRef]
Kelly,
J.
,
Roy,
N.
, and
Sukhatme,
G.
, 2014, “
Determining the Time Delay Between Inertial and Visual Sensor Measurements,” IEEE Trans. Rob.,
30(6), pp. 1514–1523.

[CrossRef]
Hulin,
T.
,
Albu-Schaffer,
A.
, and
Hirzinger,
G.
, 2014, “
Passivity and Stability Boundaries for Haptic Systems With Time Delay,” IEEE Trans. Control Syst. Technol.,
22(4), pp. 1297–1309.

[CrossRef]
Ai,
B.
,
Zheng,
Y.
,
Wong,
D.
, and
Jang,
S.
, 2011, “
Stability Analysis of EWMA Run-to-Run Controller Subject to Stochastic Metrology Delay,” 18th IFAC World Congress, Milan, Italy, Aug. 28–Sept. 2, pp. 12354–12359.

Ai,
B.
, 2012, “
Stability and Performance Analysis of Semiconductor Manufacturing Process With Exponentially Weighted Moving Average Controllers,” Ph.D. thesis, Huazhong University of Science and Technology, Wuhan, Hubei.

Ai,
B.
,
Wong,
D.
, and
Jang,
S.
, 2015, “
Stability Analysis of Semiconductor Manufacturing Process With EWMA Run-to-Run Controllers,” e-print arXiv:1510.08946[cs.SY].

Imaida,
T.
, and
Senda,
K.
, 2015, “
Performance Improvement of the PD-Based Bilateral Teleoperators With Time Delay by Introducing Relative D-Control,” Adv. Rob.,
29(6), pp. 385–400.

[CrossRef]
Suh,
I.
, and
Bien,
Z.
, 1979, “
Proportional Minus Delay Controller,” IEEE Trans. Autom. Control,
24(2), pp. 370–372.

[CrossRef]
Pyragas,
K.
, 1992, “
Continuous Control of Chaos by Self-Controlling Feedback,” Phys. Lett. A,
170(6), pp. 421–428.

[CrossRef]
Abdallah,
C.
,
Dorato,
P.
,
Benites-Read,
J.
, and
Byrne,
R.
, 1993, “
Delayed Positive Feedback Can Stabilize Oscillatory Systems,” 1993 American Control Conference, pp. 3106–3107.

Kokame,
H.
,
Hirata,
K.
,
Konishi,
K.
, and
Mori,
T.
, 2001, “
Difference Feedback Can Stabilize Uncertain Steady States,” IEEE Trans. Autom. Control,
46(12), pp. 1908–1913.

[CrossRef]
Ulsoy,
A.
, 2015, “
Time-Delayed Control of SISO Systems for Improved Stability Margins,” ASME J. Dyn. Syst., Meas., Control,
137(4), p. 041014.

[CrossRef]
Olgac,
N.
, and
Sipahi,
R.
, 2002, “
An Exact Method for the Stability Analysis of Time-Delayed Linear Time-Invariant (LTI) Systems,” IEEE Trans. Autom. Control,
47(5), pp. 793–797.

[CrossRef]
Olgac,
N.
, and
Sipahi,
R.
, 2006, “
An Improved Procedure in Detecting the Stability Robustness of Systems With Uncertain Delay,” IEEE Trans. Autom. Control,
51(7), pp. 1164–1165.

[CrossRef]
Olgac,
N.
, and
Sipahi,
R.
, 2005, “
The Cluster Treatment of Characteristic Roots and the Neutral Type Time-Delayed Systems,” ASME J. Dyn. Syst., Meas., Control,
127(1), pp. 88–97.

[CrossRef]
Sipahi,
R.
, and
Olgac,
N.
, 2006, “
A Unique Methodology for the Stability Robustness of Multiple Time Delay Systems,” Syst. Control Lett.,
55(10), pp. 819–825.

[CrossRef]
Sipahi,
R.
, and
Olgac,
N.
, 2006, “
Stability Map of Systems With Three Independent Delays,” 2006 American Control Conference, Minneapolis, MN, June 14–16, pp. 2451–2456.

Fazelinia,
H.
,
Sipahi,
R.
, and
Olgac,
N.
, 2007, “
Stability Robustness Analysis of Multiple Time-Delayed Systems Using “Building Block” Concept,” IEEE Trans. Autom. Control,
52(5), pp. 799–810.

[CrossRef]
Penin,
L.
,
Matsumoto,
K.
, and
Wakabayashi,
S.
, 2000, “
Force Reflection for Time-Delayed Teleoperation of Space Robots,” IEEE International Conference on Robotics, San Francisco, CA, Apr. 24–28, pp. 3120–3125.

Suzuki,
T.
,
Sekine,
T.
,
Fujii,
T.
,
Asama,
H.
, and
Endo,
I.
, 2000, “
Cooperative Formation Among Multiple Mobile Robot Teleoperation in Inspection Task,” 39th IEEE International Conference on Decision and Control, pp. 358–363.

Lee,
D.
,
Martinez-Palafox,
O.
, and
Spong,
M. W.
, 2005, “
Bilateral Teleoperation of Multiple Cooperative Robots Over Delayed Communication Networks: Application,” IEEE International Conference on Robotics, Apr. 18–22, pp. 366–371.

Lee,
D.
, and
Spong,
M.
, 2005, “
Bilateral Teleoperation of Multiple Cooperative Robots Over Delayed Communication Networks: Theory,” IEEE International Conference on Robotics, Apr. 18–22, pp. 360–365.

Qiu,
T.
,
Hamel,
W.
, and
Lee,
D.
, 2014, “
Preliminary Experiments of Kinesthetic Exploration in a 6 DOF Teleoperation System,” IEEE International Conference on Robotics, Hong Kong, May 31–June 7, pp. 5959–5964.

Ohnishi,
K.
,
Shimono,
T.
, and
Natori,
K.
, 2009, “
Haptics for Medical Applications,” Artif. Life Rob.,
13(2), pp. 383–389.

[CrossRef]
Ohnishi,
K.
, 2010, “
Real World Haptics and Telehaptics for Medical Applications,” IEEE International Conference on Industrial Electronics, Bari, Italy, July 4–7, pp. 11–14.

Cheong,
J.
,
Niculescu,
S.
,
Annaswamy,
A.
, and
Srinivasan,
M.
, 2005, “
Motion Synchronization in Virtual Environments With Shared Haptics and Large Time Delays,” IEEE International Conference on Haptics, Mar. 18–20, pp. 277–282.

Smith,
O.
, 1957, “
Closer Control of Loops With Dead Time,” Chem. Eng. Prog.,
53(5), pp. 217–219.

Takegaki,
M.
, and
Arimoto,
S.
, 1981, “
A New Feedback Method for Dynamic Control of Manipulators,” ASME J. Dyn. Syst., Meas., Control,
103(2), pp. 119–125.

[CrossRef]
Koditschek,
D.
, 1984, “
Natural Motion for Robot Arms,” 23rd IEEE International Conference on Decision and Control, pp. 733–735.

Ortega,
R.
, and
Spong,
M.
, 1989, “
Adaptive Motion Control of Rigid Robots: A Tutorial,” Automatica,
25(6), pp. 877–888.

[CrossRef]
Li,
Z.
,
Xia,
Y.
, and
Cao,
X.
, 2013, “
Adaptive Control of Bilateral Teleoperation With Unsymmetrical Time-Varying Delays,” Int. J. Innovations Comput. Inf. Control,
9(2), pp. 753–767.

Hokayem,
P.
,
Stipanović,
D.
, and
Spong,
M.
, 2009, “
Semiautonomous Control of Multiple Networked Lagrangian Systems,” Int. J. Robust Nonlinear Control,
19(18), pp. 2040–2055.

[CrossRef]
Insperger,
T.
,
Kovacs,
L.
,
Galambos,
P.
, and
Stepan,
G.
, 2010, “
Increasing the Accuracy of Digital Force Control Process Using the Act-and-Wait Concept,” IEEE/ASME Trans. Mechatronics,
15(2), pp. 291–298.

[CrossRef]
Li,
Z.
,
Xia,
Y.
, and
Sun,
F.
, 2014, “
Adaptive Fuzzy Control of Multilateral Cooperative Teleoperation for Multiple Robotic Manipulators Under Random Time Delays,” IEEE Trans. Fuzzy Syst.,
22(2), pp. 437–450.

[CrossRef]
Li,
Z.
,
Cao,
X.
,
Tang,
Y.
,
Li,
R.
, and
Ye,
W.
, 2013, “
Bilateral Teleoperation of Holonomic Constrained Robotic Systems With Time-Varying Delays,” IEEE Trans. Instrum. Meas.,
62(4), pp. 752–765.

[CrossRef]
Seuret,
A.
,
Ozbay,
H.
,
Bonnet,
C.
, and
Mounier,
H.
, 2014, Low-Complexity Controllers for Time-Delay Systems, Vol.
2,
Springer,
Berlin.

Diftler,
M.
,
Mehling,
J.
,
Abdallah,
M.
,
Radford,
N.
,
Bridgwater,
L.
, and
Sanders,
M.
, 2011, “
Robonaut 2: The First Humanoid Robot in Space,” IEEE International Conference on Robotics, Shanghai, China, May 9–13, pp. 2178–2183.

Cheng,
G.
,
Hyon,
S.
,
Morimoto,
J.
,
Ude,
A.
,
Hale,
J.
, and
Colvin,
G.
, 2007, “
CB: A Humanoid Research Platform for Exploring Neuroscience,” Adv. Rob.,
21(10), pp. 1097–1114.

[CrossRef]
Gu,
G.
,
Zhu,
L.
,
Xiong,
Z.
, and
Ding,
H.
, 2010, “
Design of a Distributed Multiaxis Motion Control System Using the IEEE-1394 Bus,” IEEE Trans. Ind. Electron.,
57(12), pp. 4209–4218.

[CrossRef]
Ai,
B.
,
Fan,
Z.
, and
Gao,
R.
, 2014, “
Occupancy Estimation for Smart Building by an Auto-Regressive Hidden Markov Model,” American Control Conference, Portland, OR, June 4–6, pp. 2234–2239.

Ai,
B.
,
Zheng,
Y.
,
Wang,
Y.
,
Jang,
S.
, and
Tao,
S.
, 2010, “
Cycle Forecasting EWMA (CF-EWMA) Approach for Drift and Fault in Mixed-Product Run-to-Run Process,” J. Process Control,
20(5), pp. 689–708.

[CrossRef]
Zheng,
Y.
,
Ai,
B.
,
Wong,
D.
,
Jang,
S.
, and
Zhang,
J.
, 2010, “
An EWMA Algorithm With a Cycled Resetting (CR) Discount Factor for Drift and Fault of High-Mix Run-to-Run Control,” IEEE Trans. Ind. Inf.,
6(2), pp. 229–242.

[CrossRef]
Ai,
B.
,
Zheng,
Y.
,
Jang,
S.
,
Wang,
Y.
,
Ye,
L.
, and
Zhou,
C.
, 2009, “
The Optimal Drift-Compensatory and Fault Tolerant Approach for Mixed-Product Run-to-Run Control,” J. Process Control,
19(8), pp. 1401–1412.

[CrossRef]
Ai,
B.
,
Zheng,
Y.
,
Zhang,
H.
,
Wang,
Z.
, and
Zhang,
Z.
, 2009, “
Cycle Prediction EWMA Run-to-Run Controller for Mixed-Product Drifting Process,” 48th IEEE International Conference on Decision and Control, Shanghai, China, Dec. 15–18, pp. 1908–1913.

Ai,
B.
,
Zheng,
Y.
, and
Zhang,
Z.
, 2009, “
A Fault-Tolerant Algorithm With Cycled Resetting Discount Factor in Semiconductor Manufacturing Industry,” 7th IEEE International Conference on Control and Automation,
Christchurch,
New Zealand, Dec. 9–11, pp. 483–488.

Zheng,
Y.
,
Ai,
B.
,
Wang,
Y.
, and
Zhang,
H.
, 2009, “
The dEWMA Fault Tolerant Approach for Mixed Product Run-to-Run Control,” IEEE International Conference on Industrial Electronics, Seoul, Korea, July 5–8, pp. 155–160.

Zhao,
Y.
,
Paine,
N.
,
Kim,
K.
, and
Sentis,
L.
, 2015, “
Stability and Performance Limits of Latency-Prone Distributed Feedback Controllers,” IEEE Trans. Ind. Electron.,
62(11), pp. 7151–7162.

[CrossRef]
Paine,
N.
, and
Sentis,
L.
, 2015, “
A Closed-Form Solution for Selecting Maximum Critically Damped Actuator Impedance Parameters,” ASME J. Dyn. Syst., Meas., Control,
137(7), p. 041011.

[CrossRef]
Stépán,
G.
, 1989, Retarded Dynamical Systems: Stability and Characteristic Functions, Vol.
200,
Longman Scientific & Technical Essex,
UK and Wiley, New York.

Hale,
J.
, 1993, Introduction to Functional Differential Equations, Vol.
99,
Springer,
Berlin.

Hale,
J.
, and
Lunel,
S.
, 2002, “
Strong Stabilization of Neutral Functional Differential Equations,” IMA J. Math. Control Inf.,
19(1–2), pp. 5–23.

[CrossRef]
Hu,
G.
, 1996, “
Some Simple Criteria for Stability of Neutral Delay-Differential Systems,” Appl. Math. Comput.,
80(2–3), pp. 257–271.

[CrossRef]
Chen,
J.
,
Gu,
G.
, and
Nett,
C.
, 1994, “
A New Method for Computing Delay Margins for Stability of Linear Delay Systems,” 33rd IEEE International Conference on Decision and Control, Lake Buena Vista, FL, Dec. 14–16, pp. 433–437.

Niculescu,
S.
, 2001, Delay Effects on Stability: A Robust Control Approach, Vol.
269,
Springer,
Berlin.

Park,
P.
, 1999, “
A Delay-Dependent Stability Criterion for Systems With Uncertain Time-Invariant Delays,” IEEE Trans. Autom. Control,
44(4), pp. 876–877.

[CrossRef]
Rekasius,
Z.
, 1980, “
A Stability Test for Systems With Delays,” Joint Automation Control Conference, Paper No. TP9–A.

Thowsen,
A.
, 1981, “
An Analytic Stability Test for a Class of Time-Delay Systems,” IEEE Trans. Autom. Control,
26(3), pp. 735–736.

[CrossRef]
Hertz,
D.
,
Jury,
E.
, and
Zeheb,
E.
, 1984, “
Simplified Analytic Stability Test for Systems With Commensurate Time Delays,” IEE Proc. D (Control Theor. Appl.),
131(1), pp. 52–56.

[CrossRef]
MacDonald,
N.
, 1985, “
Comments on a Simplified Analytical Stability Test for Systems With Delay,” IEE Proc. D (Control Theor. Appl.),
132(5), pp. 237–238.

[CrossRef]
Kolmanovskiĭ,
V.
, 1986, Stability of Functional Differential Equations, Vol.
180,
Elsevier,
New York.

Zhang,
L.
,
Yang,
C.
,
Chajes,
M.
, and
Cheng,
A.
, 1993, “
Stability of Active-Tendon Structural Control With Time Delay,” J. Eng. Mech. ASCE,
119(5), pp. 1017–1024.

[CrossRef]
Chiasson,
J.
, and
Loiseau,
J.
, 2007, Applications of Time Delay Systems, Vol.
352,
Springer,
Berlin.

Insperger,
T.
, and
Stépán,
G.
, 2011, Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications, Vol.
178,
Springer,
Berlin.

Michiels,
W.
, and
Niculescu,
S.
, 2014, Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach, Vol.
27,
SIAM,
Philadelphia.

Toker,
O.
, and
Özbay,
H.
, 1996, “
Complexity Issues in Robust Stability of Linear Delay-Differential Systems,” Math. Control Signals,
9(4), pp. 386–400.

[CrossRef]
Akritas,
A.
,
Gennadi,
M.
, and
Vigklas,
P.
, 2014, “
Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences,” Serdica J. Comput.,
8(1), pp. 29–46.

Barnett,
S.
, 1983, Polynomials and Linear Control Systems,
Marcel Dekker,
New York.

Sipahi,
R.
, and
Delice,
I. I.
, 2009, “
Extraction of 3D Stability Switching Hypersurfaces of a Time Delay System With Multiple Fixed Delays,” Automatica,
45(6), pp. 1449–1454.

[CrossRef]
Sipahi,
R.
, and
Delice,
I.
, 2011, “
Advanced Clustering With Frequency Sweeping Methodology for the Stability Analysis of Multiple Time-Delay Systems,” IEEE Trans. Autom. Control,
56(2), pp. 467–472.

[CrossRef]
Michiels,
W.
, and
Niculescu,
S.
, 2007, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach, Vol.
12,
SIAM,
Philadelphia.

Michiels,
W.
,
Vyhlídal,
T.
, and
Zítek,
P.
, 2010, “
Control Design for Time-Delay Systems Based on Quasi-Direct Pole Placement,” J. Process Control,
20(3), pp. 337–343.

[CrossRef]
Michiels,
W.
, and
Vyhlídal,
T.
, 2005, “
An Eigenvalue Based Approach for the Stabilization of Linear Time-Delay Systems of Neutral Type,” Automatica,
41(4), pp. 991–998.

[CrossRef]
Vyhlídal,
T.
, and
Zítek,
P.
, 2003, “
Quasipolynomial Mapping Based Rootfinder for Analysis of Time Delay Systems,” 4th Proceedings of the IFAC Workshop on Time-Delay Systems, pp. 227–232.

Vyhlídal,
T.
, and
Zítek,
P.
, 2009, “
Mapping Based Algorithm for Large-Scale Computation of Quasi-Polynomial Zeros,” IEEE Trans. Autom. Control,
54(1), pp. 171–177.

[CrossRef]
Cooke,
K.
, and
Driessche,
P.
, 1996, “
Analysis of an SEIRS Epidemic Model With Two Delays,” J. Math. Boil.,
35(2), pp. 240–260.

[CrossRef]
Cooke,
K.
,
Driessche,
P.
, and
Zou,
X.
, 1999, “
Interaction of Maturation Delay and Nonlinear Birth in Population and Epidemic Models,” J. Math. Boil.,
39(4), pp. 332–352.

[CrossRef]
Cooke,
K.
, and
Driessche,
P.
, 1986, “
On Zeroes of Some Transcendental Equations,” Funkcialaj Ekvacio,
29(1), pp. 77–90.

Walton,
K.
, and
Marshall,
J.
, 1984, “
Closed Form Solution for Time Delay Systems' Cost Functionals,” Int. J. Control,
39(5), pp. 1063–1071.

[CrossRef]
Walton,
K.
, and
Marshall,
J.
, 1987, “
Direct Method for TDS Stability Analysis,” IEE Proc. D,
134(2), pp. 101–107.

[CrossRef]
Loiusell,
J.
, 2001, “
A Matrix Method for Determining the Imaginary Axis Eigenvalues of a Delay System,” IEEE Trans. Autom. Control,
46(12), pp. 2008–2012.

[CrossRef]
Aström,
K.
, and
Murray,
R.
, 2010, Feedback Systems: An Introduction for Scientists and Engineers,
Princeton,
Englewood Cliffs, NJ.