Bellman,
R.
, 1957, Dynamic Programming,
Princeton University Press,
Princeton, NJ.
Howard,
R.
, 1960, Dynamic Programming and Markov Processes,
MIT Press,
Cambridge, MA.
d'Epenoux,
F.
, 1960, “
Sur un probleme de production et de stockage dans laléatoire,” Rev. Fr. Rech. Opér.,
14, pp. 3–16.
Derman,
C.
, 1970, Finite State Markovian Decision Processes,
Academic Press,
Orlando.
Puterman,
M. L.
, 1994, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st ed.,
Wiley,
New York.
Born,
M.
, and
Fock,
V.
, 1928, “
Beweis des adiabatensatzes,” Z. Phys.,
51, pp. 165–180.
[CrossRef]
Messiah,
A.
, 1962, Quantum Mechanics, 1st ed., Vol.
2,
Wiley,
New York.
[PubMed] [PubMed]
Kovchegov,
Y.
, 2010, “
A Note on Adiabatic Theorem for Markov Chains,” Stat. Probab. Lett.,
80, pp. 186–190.
[CrossRef]
Bradford,
K.
, and
Kovchegov,
Y.
, 2011, “
Adiabatic Times for Markov Chains and Applications,” J. Stat. Phys.,
143(5), pp. 955–969.
[CrossRef]
Szita,
I.
,
Takács,
B.
, and
Lörincz,
A.
, 2002, “
ɛ-MDPS: Learning in Varying Environments,,” J. Mach. Learn. Res.,
3, pp. 145–174.
Bradford,
K.
,
Kovchegov,
Y.
, and
Nguyen,
T.
, 2016, “
Stable Adiabatic Times for Markov Chains,” Stochastics,
88(4), pp. 567–585.
Rosenwald,
R.
,
Meyer,
D.
, and
Schmitt,
H.
, 2004, “
Applications of Quantum Algorithms to Partially Observable Markov Decision Processes,” 5th Asian Control Conference, Melbourne, Australia, June 20–23, Vol.
1, pp. 420–427.
Zacharias,
L.
,
Nguyen,
T.
,
Kovchegov,
Y.
, and
Bradford,
K.
, 2012, “
Analysis of Adaptive Queuing Policies Via Adiabatic Approach,” 2013 International Conference on Computing, Networking and Communications (ICNC), Network Algorithm and Performance Evaluation Symposium, San Diego, CA, Jan. 28–31, pp. 1053–1057.
Duong,
T.
,
Nguyen-Huu,
D.
, and
Nguyen,
T.
, 2013, “
Adiabatic Markov Decision Process With Application to Queuing Systems,” 47th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, Mar. 20–22, pp. 1–6.
Derman,
C.
, and
Strauch,
R. E.
, 1966, “
A Note on Memoryless Rules for Controlling Sequential Control Processes,” Ann. Math. Stat.,
37(1), pp. 276–278.
[CrossRef]
Seneta,
E.
, 1981, Non-Negative Matrices and Markov Chains,
Springer-Verlag, New York.
Levin,
A. D.
,
Peres,
Y.
, and
Wilmer,
E. L.
, 2008, Markov Chains and Mixing Times,
American Mathematical Society, Providence, RI.
Kleinrock,
L.
, 1976, Queuing Systems: Theory, Vol.
1,
Wiley,
New York.
Kleinrock,
L.
, 1976, Queuing Systems: Computer Applications,
Wiley,
New York.
Gautam,
N.
, 2012, Analysis of Queues: Methods and Applications (Operations Research Series),
Taylor & Francis,
Boca Raton.
Lawler,
G.
, 2006, Introduction to Stochastic Processes (Chapman and Hall/CRC Probability Series),
Chapman & Hall/CRC,
Boca Raton.
Bremaud,
P.
, 1999, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues (Texts in Applied Mathematics),
Springer,
Boca Raton.
Briem,
U.
,
Theimer,
T.
, and
Kröner,
H.
, 1991, “
A General Discrete-Time Queuing Model: Analysis and Applications,” International Teletraffic Congress, Vol.
13, pp. 13–19.
Morrison,
J. A.
, 1980, “
Analysis of Some Overflow Problems With Queuing,” Bell Syst. Tech. J.,
59(8), pp. 1427–1462.
[CrossRef]