0
Research Papers

Robust Control of Quadrotors Based on an Uncertainty and Disturbance Estimator

[+] Author and Article Information
Ricardo Sanz

Instituto de Automática e Informática Industrial,
Universidad Politécnica de Valencia,
Valencia 46022, Spain
e-mail: risanzdi@gmail.com

Pedro Garcia

Instituto de Automática e Informática Industrial,
Universidad Politécnica de Valencia,
Valencia 46022, Spain
e-mail: pggil@isa.upv.es

Qing-Chang Zhong

Department of Electrical and
Computer Engineering,
Illinois Institute of Technology,
Chicago, IL 60616
e-mail: zhongqc@ieee.org

Pedro Albertos

Instituto de Automática e Informática Industrial,
Universidad Politécnica de Valencia,
Valencia 46022, Spain
e-mail: pedro@aii.upv.es

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received January 22, 2015; final manuscript received March 28, 2016; published online May 13, 2016. Assoc. Editor: Manish Kumar.

J. Dyn. Sys., Meas., Control 138(7), 071006 (May 13, 2016) (8 pages) Paper No: DS-15-1035; doi: 10.1115/1.4033315 History: Received January 22, 2015; Revised March 28, 2016

In this paper, a robust control strategy is proposed to control the attitude and the altitude of quadrotors, based on an uncertainty and disturbance estimator (UDE). It is shown that the proposed controller can be tuned very easily, achieving the desired performance only by selecting an appropriate reference model and tuning a single parameter to tradeoff disturbance rejection with noise amplification in the control signal. The proposed control strategy is extensively validated in real-time applications with an experimental Quanser platform and also with a quadrotor prototype in real flight tests.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bouabdallah, S. , 2007, “ Design and Control of Quadrotors With Application to Autonomous Flying,” Ph.D. thesis, Lausanne Polytechnic University, Lausanne, Switzerland.
Tomic, T. , Schmid, K. , Lutz, P. , Domel, A. , Kassecker, M. , Mair, E. , Grixa, I . L. , Ruess, F. , Suppa, M. , and Burschka, D. , 2012, “ Toward a Fully Autonomous UAV: Research Platform for Indoor and Outdoor Urban Search and Rescue,” IEEE Rob. Autom. Mag., 19(3), pp. 46–56. [CrossRef]
Lozano, R. , 2013, Unmanned Aerial Vehicles: Embedded Control, Wiley-ISTE, Hoboken, NJ/London.
Lindsey, Q. , Mellinger, D. , and Kumar, V. , 2012, “ Construction With Quadrotor Teams,” Auton. Rob., 33(3), pp. 323–336. [CrossRef]
Mellinger, D. , Michael, N. , Shomin, M. , and Kumar, V. , 2011, “ Recent Advances in Quadrotor Capabilities,” 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9–13, pp. 2964–2965.
Mahony, R. , Kumar, V. , and Corke, P. , 2012, “ Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor,” IEEE Rob. Autom. Mag., 19(3), pp. 20–32. [CrossRef]
Bergamasco, M. , and Lovera, M. , 2014, “ Identification of Linear Models for the Dynamics of a Hovering Quadrotor,” IEEE Trans. Control Syst. Technol., 22(5), pp. 1696–1707. [CrossRef]
Garcia, P. C. , Lozano, R. , and Dzul, A. E. , 2006, Modeling and Control of Mini-Flying Machines, Springer-Verlag, London.
Sanchez-Orta, A. , Parra-Vega, V. , Izaguirre-Espinosa, C. , and Garcia, O. , 2014, “ Position-Yaw Tracking of Quadrotors,” ASME J. Dyn. Syst., Meas., Control, 137(6), p. 061011. [CrossRef]
Liu, H. , Lu, G. , and Zhong, Y. , 2013, “ Robust LQR Attitude Control of a 3-DOF Laboratory Helicopter for Aggressive Maneuvers,” IEEE Trans. Ind. Electron., 60(10), pp. 4627–4636. [CrossRef]
Bouabdallah, S. , and Siegwart, R. , 2007, “ Full Control of a Quadrotor,” IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, San Diego, CA, Oct. 29–Nov. 2, pp. 153–158.
Franchi, A. , Secchi, C. , Ryll, M. , Bulthoff, H. , and Giordano, P. R. , 2012, “ Shared Control: Balancing Autonomy and Human Assistance With a Group of Quadrotor UAVS,” IEEE Rob. Autom. Mag., 19(3), pp. 57–68. [CrossRef]
Lungu, M. , and Lungu, R. , 2013, “ Adaptive Backstepping Flight Control for a Mini-UAV,” Int. J. Adapt. Control Signal Process., 27(8), pp. 635–650. [CrossRef]
Lungu, M. , 2012, “ Stabilization and Control of a UAV Flight Attitude Angles Using the Backstepping Method,” International Conference on Modeling and Simulation (ICMS 2012), World Academy of Science, Engineering and Technology, Zurich, Switzerland, Jan. 15–17, pp. 299–306.
Raffo, G. V. , Ortega, M. G. , and Rubio, F. R. , 2010, “ An Integral Predictive/Nonlinear H Control Structure for a Quadrotor Helicopter,” Automatica, 46(1), pp. 29–39. [CrossRef]
Zheng, B. , and Zhong, Y. , 2011, “ Robust Attitude Regulation of a 3-DOF Helicopter Benchmark: Theory and Experiments,” IEEE Trans. Ind. Electron., 58(2), pp. 660–670. [CrossRef]
Tayebi, A. , and McGilvray, S. , 2006, “ Attitude Stabilization of a VTOL Quadrotor Aircraft,” IEEE Trans. Control Syst. Technol., 14(3), pp. 562–571. [CrossRef]
Bouabdallah, S. , Noth, A. , and Siegwart, R. , 2004, “ PID versus LQ Control Techniques Applied to an Indoor Micro Quadrotor,” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2004), Sept. 28–Oct. 2, Vol. 3, pp. 2451–2456.
Lim, H. , Park, J. , Lee, D. , and Kim, H. J. , 2012, “ Build Your Own Quadrotor: Open-Source Projects on Unmanned Aerial Vehicles,” IEEE Rob. Autom. Mag., 19(3), pp. 33–45. [CrossRef]
Lozano, R. , Castillo, P. , Garcia, P. , and Dzul, A. , 2004, “ Robust Prediction-Based Control for Unstable Delay Systems: Application to the Yaw Control of a Mini-Helicopter,” Automatica, 40(4), pp. 603–612. [CrossRef]
Castillo, P. , Lozano, R. , and Dzul, A. , 2005, “ Stabilization of a Mini Rotorcraft With Four Rotors,” IEEE Control Syst. Mag., 25(6), pp. 45–55. [CrossRef]
Escareno, J. , Salazar-Cruz, S. , and Lozano, R. , 2006, “ Embedded Control of a Four-Rotor UAV,” American Control Conference, Minneapolis, MN, June 14–16, p. 6.
Kendoul, F. , Lara, D. , Fantoni, I. , and Lozano, R. , 2007, “ Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter,” J. Guid., Control, Dyn., 30(4), pp. 1049–1061. [CrossRef]
Sanchez, A. , Garcia, P. , Garcia, P. C. , and Lozano, R. , 2008, “ Simple Real-Time Stabilization of Vertical Takeoff and Landing Aircraft With Bounded Signals,” J. Guid., Control, Dyn., 31(4), pp. 1166–1176. [CrossRef]
González, I. , Salazar, S. , Torres, J. , Lozano, R. , and Romero, H. , 2013, “ Real-Time Attitude Stabilization of a Mini-UAV Quad-Rotor Using Motor Speed Feedback,” J. Intell. Rob. Syst., 70(1–4), pp. 93–106. [CrossRef]
Liu, H. , Bai, Y. , Lu, G. , and Zhong, Y. , 2013, “ Robust Attitude Control of Uncertain Quadrotors,” IET Control Theory Appl., 7(11), pp. 1583–1589. [CrossRef]
Castillo, P. , Dzul, A. , and Lozano, R. , 2004, “ Real-Time Stabilization and Tracking of a Four-Rotor Mini Rotorcraft,” IEEE Trans. Control Syst. Technol., 12(4), pp. 510–516. [CrossRef]
Zhang, R. , Quan, Q. , and Cai, K.-Y. , 2011, “ Attitude Control of a Quadrotor Aircraft Subject to a Class of Time-Varying Disturbances,” IET Control Theory Appl., 5(9), pp. 1140–1146. [CrossRef]
Hoffmann, G. M. , Huang, H. , Waslander, S. L. , and Tomlin, C. J. , 2007, “ Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment,” AIAA Paper No. 2007-6461.
Escareño, J. , Salazar, S. , Romero, H. , and Lozano, R. , 2013, “ Trajectory Control of a Quadrotor Subject to 2D Wind Disturbances,” J. Intell. Rob. Syst., 70(1–4), pp. 51–63. [CrossRef]
Waslander, S. L. , and Wang, C. , 2009, “ Wind Disturbance Estimation and Rejection for Quadrotor Position Control,” AIAA Paper No. 2009-1983.
Liu, H. , Wang, X. , and Zhong, Y. , 2014, “ Robust Position Control of a Lab Helicopter Under Wind Disturbances,” IET Control Theory Appl., 8(15), pp. 1555–1565. [CrossRef]
Zhong, Q.-C. , and Rees, D. , 2004, “ Control of Uncertain LTI Systems Based on an Uncertainty and Disturbance Estimator,” ASME J. Dyn. Syst., Meas., Control, 126(4), pp. 905–910. [CrossRef]
Talole, S. , and Phadke, S. , 2009, “ Robust Input–Output Linearisation Using Uncertainty and Disturbance Estimation,” Int. J. Control, 82(10), pp. 1794–1803. [CrossRef]
Kuperman, A. , and Zhong, Q.-C. , 2011, “ Robust Control of Uncertain Nonlinear Systems With State Delays Based on an Uncertainty and Disturbance Estimator,” Int. J. Robust Nonlinear Control, 21(1), pp. 79–92. [CrossRef]
Kolhe, J. P. , Shaheed, M. , Chandar, T. , and Talole, S. , 2013, “ Robust Control of Robot Manipulators Based on Uncertainty and Disturbance Estimation,” Int. J. Robust Nonlinear Control, 23(1), pp. 104–122. [CrossRef]
Deshpande, V. , and Phadke, S. , 2012, “ Control of Uncertain Nonlinear Systems Using an Uncertainty and Disturbance Estimator,” ASME J. Dyn. Syst., Meas., Control, 134(2), p. 024501. [CrossRef]
Youcef-Toumi, K. , and Ito, O. , 1990, “ A Time Delay Controller for Systems With Unknown Dynamics,” ASME J. Dyn. Syst., Meas., Control, 112(1), pp. 133–142. [CrossRef]
Ren, B. , Zhong, Q.-C. , and Chen, J. , 2015, “ Robust Control for a Class of Non-Affine Nonlinear Systems Based on the Uncertainty and Disturbance Estimator,” IEEE Trans. Ind. Electron., 62(9), pp. 5881–5888. [CrossRef]
Sanz, R. , Rodenas, L. , Garcia, P. , and Castillo, P. , 2014, “ Improving Attitude Estimation Using Inertial Sensors for Quadrotor Control Systems,” 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, May 27–30, pp. 895–901.
Sanahuja, G. , Castillo, P. , and Sanchez, A. , 2010, “ Stabilization of n Integrators in Cascade With Bounded Input With Experimental Application to a VTOL Laboratory System,” Int. J. Robust Nonlinear Control, 20(10), pp. 1129–1139.

Figures

Grahic Jump Location
Fig. 1

Sketch of a 6DOF quadrotor

Grahic Jump Location
Fig. 3

Nyquist plots of the system with the PID controller and the UDE-based controller with T = 0.28 s

Grahic Jump Location
Fig. 6

System response comparison with white-noise measurement and a−10 step load disturbance at t = 3 s

Grahic Jump Location
Fig. 4

Influence of the parameter T on the disturbance rejection performance and control signal

Grahic Jump Location
Fig. 5

Effect of T in measurement noise attenuation

Grahic Jump Location
Fig. 2

The 3D HOVER system used in experiments

Grahic Jump Location
Fig. 12

Full flight test results with the proposed UDE-based control

Grahic Jump Location
Fig. 7

Disturbance rejection comparison for similar reference tracking performance: PID (roll) and UDE (pitch)

Grahic Jump Location
Fig. 8

Robustness comparison for similar reference tracking performance

Grahic Jump Location
Fig. 9

The quadrotor used in real flight tests

Grahic Jump Location
Fig. 10

Real flight test of hovering: UDE for roll and PID for pitch (left) and PID for roll and UDE for pitch (right)

Grahic Jump Location
Fig. 11

Disturbance rejection: UDE for roll and PID for pitch (left) and PID for roll and UDE for pitch (right)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In