0
Research Papers

Closed-Loop Fluid Resuscitation Control Via Blood Volume Estimation

[+] Author and Article Information
Ramin Bighamian

Department of Mechanical Engineering,
University of Maryland,
2181 Glenn L. Martin Hall,
College Park, MD 20742
e-mail: rbighami@umd.edu

Chang-Sei Kim

Department of Mechanical Engineering,
University of Maryland,
2181 Glenn L. Martin Hall,
College Park, MD 20742
e-mail: cskim75@umd.edu

Andrew T. Reisner

Department of Emergency Medicine,
Massachusetts General Hospital,
55 Fruit Street,
Boston, MA 02114
e-mail: AREISNER@mgh.harvard.edu

Jin-Oh Hahn

Mem. ASME
Department of Mechanical Engineering,
University of Maryland,
2181 Glenn L. Martin Hall,
College Park, MD 20742
e-mail: Jhahn12@umd.edu

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received October 7, 2015; final manuscript received April 27, 2016; published online July 13, 2016. Assoc. Editor: Xiaopeng Zhao.

J. Dyn. Sys., Meas., Control 138(11), 111005 (Jul 13, 2016) (8 pages) Paper No: DS-15-1492; doi: 10.1115/1.4033833 History: Received October 07, 2015; Revised April 27, 2016

This paper presents a closed-loop control of fluid resuscitation to overcome hypovolemia based on model-based estimation of relative changes in blood volume (BV). In this approach, the control system consists of a model-based relative BV (RBV) estimator and a feedback controller. The former predicts relative changes in the BV response to augmented fluid by analyzing an arterial blood pressure (BP) waveform and the electrocardiogram (ECG). Then, the latter determines the amount of fluid to be augmented by comparing target versus predicted relative changes in BV. In this way, unlike many previous methods for fluid resuscitation based on controlled variable(s) nonlinearly correlated with the changes in BV, fluid resuscitation can be guided by a controlled variable linearly correlated with the changes in BV. This paper reports initial design of the closed-loop fluid resuscitation system and its in silico evaluation in a wide range of hypovolemic scenarios. The results suggest that closed-loop fluid resuscitation guided by a controlled variable linearly correlated with the changes in BV can be effective in overcoming hypovolemia: across 100 randomly produced hypovolemia cases, it resulted in the BV regulation error of 7.98 ± 171.6 ml, amounting to 0.18 ± 3.04% of the underlying BV. When guided by pulse pressure (PP), a classical controlled variable nonlinearly correlated with the changes in BV; the same closed-loop fluid resuscitation system resulted in persistent under-resuscitation with the BV regulation error of −779.1 ± 147.4 ml, amounting to −13.9 ± 2.65% of the underlying BV.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Vatner, S. F. , 1974, “ Effects of Hemorrhage on Regional Blood Flow Distribution in Dogs and Primates,” J. Clin. Invest., 54(2), pp. 225–235. [CrossRef] [PubMed]
Chien, S. , 1971, “ Hemodynamics in Hemorrhage: Influences of Sympathetic Nerves and Pentobarbital Anesthesia,” Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. N. Y. N, 136(1), pp. 271–275. [CrossRef]
Barrow, R. E. , Jeschke, M. G. , and Herndon, D. N. , 2000, “ Early Fluid Resuscitation Improves Outcomes in Severely Burned Children,” Resuscitation, 45(2), pp. 91–96. [CrossRef] [PubMed]
Bortolani, A. , Governa, M. , and Barisoni, D. , 1996, “ Fluid Replacement in Burned Patients,” Acta Chir. Plast., 38( 4), pp. 132–136. [PubMed]
Pruitt, B. A. , 1978, “ Fluid and Electrolyte Replacement in the Burned Patient,” Surg. Clin. North Am., 58(6), pp. 1291–1312. [PubMed]
Hollenberg, S. M. , Kavinsky, C. J. , and Parrillo, J. E. , 1999, “ Cardiogenic Shock,” Ann. Intern. Med., 131(1), pp. 47–59. [CrossRef] [PubMed]
Hunter, J. D. , and Doddi, M. , 2010, “ Sepsis and the Heart,” Br. J. Anaesth., 104(1), pp. 3–11. [CrossRef] [PubMed]
Guillamet, M. C. V. , Rhee, C. , and Patterson, A. J. , 2012, “ Cardiovascular Management of Septic Shock in 2012,” Curr. Infect. Dis. Rep., 14(5), pp. 493–502. [CrossRef] [PubMed]
Wolf, S. E. , Rose, J. K. , Desai, M. H. , Mileski, J. P. , Barrow, R. E. , and Herndon, D. N. , 1997, “ Mortality Determinants in Massive Pediatric Burns. An Analysis of 103 Children With > or = 80% TBSA Burns (> or = 70% Full-Thickness),” Ann. Surg., 225(5), pp. 554–569. [CrossRef] [PubMed]
Varadhan, K. K. , and Lobo, D. N. , 2010, “ A Meta-Analysis of Randomised Controlled Trials of Intravenous Fluid Therapy in Major Elective Open Abdominal Surgery: Getting the Balance Right,” Proc. Nutr. Soc., 69(4), pp. 488–498. [CrossRef] [PubMed]
Michard, F. , 2013, “ Decision Support for Hemodynamic Management: From Graphical Displays to Closed Loop Systems,” Anesth. Analg., 117(4), pp. 876–882. [CrossRef] [PubMed]
Bajwa, S. S. , and Kulshrestha, A. , 2012, “ Diagnosis, Prevention and Management of Postoperative Pulmonary Edema,” Ann. Med. Health Sci. Res., 2(2), pp. 180–185. [CrossRef] [PubMed]
Dellinger, R. P. , Levy, M. M. , Rhodes, A. , Annane, D. , Gerlach, H. , Opal, S. M. , Sevransky, J. E. , Sprung, C. L. , Douglas, I. S. , Jaeschke, R. , Osborn, T. M. , Nunnally, M. E. , Townsend, S. R. , Reinhart, K. , Kleinpell, R. M. , Angus, D. C. , Deutschman, C. S. , Machado, F. R. , Rubenfeld, G. D. , Webb, S. A. , Beale, R. J. , Vincent, J.-L. , and Moreno, R. , and Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup, 2013, “ Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012,” Crit. Care Med., 41(2), pp. 580–637. [CrossRef] [PubMed]
Salinas, J. , Drew, G. , Gallagher, J. , Cancio, L. C. , Wolf, S. E. , Wade, C. E. , Holcomb, J. B. , Herndon, D. N. , and Kramer, G. C. , 2008, “ Closed-Loop and Decision-Assist Resuscitation of Burn Patients,” J. Trauma, 64(4 Suppl.), pp. S321–S332. [CrossRef] [PubMed]
Consortium for Spinal Cord Medicine, 2008, “ Early Acute Management in Adults with Spinal Cord Injury: A Clinical Practice Guideline for Health-Care Professionals,” J. Spinal Cord Med., 31(4), pp. 403–479. [PubMed]
Kramer, G. C. , Kinsky, M. P. , Prough, D. S. , Salinas, J. , Sondeen, J. L. , Hazel-Scerbo, M. L. , and Mitchell, C. E. , 2008, “ Closed-Loop Control of Fluid Therapy for Treatment of Hypovolemia,” J. Trauma, 64(4 Suppl.), pp. S333–S341. [CrossRef] [PubMed]
Roche, A. M. , Miller, T. E. , and Gan, T. J. , 2009, “ Goal-Directed Fluid Management With Transesophageal Doppler,” Best Pract. Res. Clin. Anaesthesiol., 23(3), pp. 327–334. [CrossRef] [PubMed]
Rinehart, J. , Alexander, B. , Manach, Y. L. , Hofer, C. K. , Tavernier, B. , Kain, Z. N. , and Cannesson, M. , 2011, “ Evaluation of a Novel Closed-Loop Fluid-Administration System Based on Dynamic Predictors of Fluid Responsiveness: An in Silico Simulation Study,” Crit. Care, 15(6), p. R278. [CrossRef] [PubMed]
Le Manach, Y. , Hofer, C. K. , Lehot, J. J. , Vallet, B. , Goarin, J. P. , Tavernier, B. , and Cannesson, M. , 2012, “ Can Changes in Arterial Pressure Be Used to Detect Changes in Cardiac Output During Volume Expansion in the Perioperative Period?,” Anaesthesiology, 117(6), pp. 1165–1174. [CrossRef]
Rinehart, J. , Lee, C. , Cannesson, M. , and Dumont, G. , 2013, “ Closed-Loop Fluid Resuscitation: Robustness Against Weight and Cardiac Contractility Variations,” Anesth. Analg., 117(5), pp. 1110–1118. [CrossRef] [PubMed]
Ramsingh, D. , Alexander, B. , and Cannesson, M. , 2013, “ Clinical Review: Does It Matter Which Hemodynamic Monitoring System Is Used?,” Crit. Care, 17(2), p. 208. [CrossRef] [PubMed]
Bendjelid, K. , and Romand, J. A. , 2003, “ Fluid Responsiveness in Mechanically Ventilated Patients: A Review of Indices Used in Intensive Care,” Intensive Care Med., 29(3), pp. 352–360. [CrossRef] [PubMed]
Rinehart, J. , Chung, E. , Canales, C. , and Cannesson, M. , 2012, “ Intraoperative Stroke Volume Optimization Using Stroke Volume, Arterial Pressure, and Heart Rate: Closed-Loop (Learning Intravenous Resuscitator) Versus Anaesthesiologists,” J. Cardiothorac. Vasc. Anesth., 26(5), pp. 933–939. [CrossRef] [PubMed]
Cannesson, M. , Aboy, M. , Hofer, C. K. , and Rehman, M. , 2011, “ Pulse Pressure Variation: Where Are We Today?,” J. Clin. Monit. Comput., 25(1), pp. 45–56. [CrossRef] [PubMed]
Parkin, G. , Wright, C. , Bellomo, R. , and Boyce, N. , 1994, “ Use of a Mean Systemic Filling Pressure Analogue During the Closed-Loop Control of Fluid Replacement in Continuous Hemodiafiltration,” J. Crit. Care, 9(2), pp. 124–133. [CrossRef] [PubMed]
Cannesson, M. , de Backer, D. , and Hofer, C. K. , 2011, “ Using Arterial Pressure Waveform Analysis for the Assessment of Fluid Responsiveness,” Expert Rev. Med. Devices, 8(5), pp. 635–646. [CrossRef] [PubMed]
Rinehart, J. , Lee, C. , Canales, C. , Kong, A. , Kain, Z. , and Cannesson, M. , 2013, “ Closed-Loop Fluid Administration Compared to Anaesthesiologist Management for Hemodynamic Optimization and Resuscitation During Surgery: An In Vivo Study,” Anesth. Analg., 117(5), pp. 1119–1129. [CrossRef] [PubMed]
Cannesson, M. , Attof, Y. , Rosamel, P. , Desebbe, O. , Joseph, P. , Metton, O. , Bastien, O. , and Lehot, J. J. , 2007, “ Respiratory Variations in Pulse Oximetry Plethysmographic Waveform Amplitude to Predict Fluid Responsiveness in the Operating Room,” Anaesthesiology, 106(6), pp. 1105–1111. [CrossRef]
Bowman, R. J. , and Westenskow, D. R. , 1981, “ A Microcomputer-Based Fluid Infusion System for the Resuscitation of Burn Patients,” IEEE Trans. Biomed. Eng., 28(6), pp. 475–479. [CrossRef] [PubMed]
Cannesson, M. , 2010, “ Arterial Pressure Variation and Goal-Directed Fluid Therapy,” J. Cardiothorac. Vasc. Anesth., 24(3), pp. 487–497. [CrossRef] [PubMed]
Hofer, C. K. , and Cannesson, M. , 2011, “ Monitoring Fluid Responsiveness,” Acta Anaesthesiol. Taiwanica Off. J. Taiwan Soc. Anaesthesiol., 49(2), pp. 59–65. [CrossRef]
Rinehart, J. , Liu, N. , Alexander, B. , and Cannesson, M. , 2012, “ Review Article: Closed-Loop Systems in Anesthesia: Is There a Potential for Closed-Loop Fluid Management and Hemodynamic Optimization?,” Anesth. Analg., 114(1), pp. 130–143. [CrossRef] [PubMed]
De Backer, D. , and Pinsky, M. R. , 2007, “ Can One Predict Fluid Responsiveness in Spontaneously Breathing Patients?,” Intensive Care Med., 33(7), pp. 1111–1113. [CrossRef] [PubMed]
Rinehart, J. B. , 2014, “ Closed-Loop Fluid Management and Hemodynamic Optimization,” Monitoring Technologies in Acute Care Environments, J. M. Ehrenfeld and M. Cannesson , eds., Springer, New York, pp. 147–157.
Cannesson, M. , and Pinsky, M. , 2015, “ Noninvasive Hemodynamic Monitoring: Can We Have It All?,” Anesth. Analg., 120(1), pp. 10–11. [CrossRef] [PubMed]
Marik, P. E. , 2015, “ Fluid Therapy in 2015 and Beyond: the Mini-Fluid Challenge and Mini-Fluid Bolus Approach,” Br. J. Anaesth., 115(3), pp. 347–349. [CrossRef] [PubMed]
Marik, P. E. , Baram, M. , and Vahid, B. , 2008, “ Does Central Venous Pressure Predict Fluid Responsiveness? A Systematic Review of the Literature and the Tale of Seven Mares,” Chest, 134(1), pp. 172–178. [CrossRef] [PubMed]
Michard, F. , 2005, “ Volume Management Using Dynamic Parameters: The Good, the Bad, and the Ugly,” Chest, 128(4), pp. 1902–1903. [CrossRef] [PubMed]
Marik, P. E. , 2009, “ Techniques for Assessment of Intravascular Volume in Critically Ill Patients,” J. Intensive Care Med., 24(5), pp. 329–337. [CrossRef] [PubMed]
Convertino, V. A. , Cooke, W. H. , and Holcomb, J. B. , 2006, “ Arterial Pulse Pressure and Its Association With Reduced Stroke Volume During Progressive Central Hypovolemia,” J. Trauma, 61(3), pp. 629–634. [CrossRef] [PubMed]
Leonetti, P. , Audat, F. , Girard, A. , Laude, D. , Lefrère, F. , and Elghozi, J. L. , 2004, “ Stroke Volume Monitored by Modeling Flow From Finger Arterial Pressure Waves Mirrors Blood Volume Withdrawn by Phlebotomy,” Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc., 14(3), pp. 176–181.
Reisner, A. T. , Xu, D. , Ryan, K. L. , Convertino, V. A. , Rickards, C. A. , and Mukkamala, R. , 2011, “ Monitoring Non-Invasive Cardiac Output and Stroke Volume During Experimental Human Hypovolaemia and Resuscitation,” BJA Br. J. Anaesth., 106(1), pp. 23–30. [CrossRef]
DeBey, R. K. , Westenskow, D. R. , Jordan, W. S. , and McJames, S. W. , 1987, “ A Urine Based Control System for Fluid Infusion,” Biomed. Sci. Instrum., 23, pp. 195–198. [PubMed]
Hoskins, S. L. , Elgjo, G. I. , Lu, J. , Ying, H. , Grady, J. J. , Herndon, D. N. , and Kramer, G. C. , 2006, “ Closed-Loop Resuscitation of Burn Shock,” J. Burn Care Res. Off. Publ. Am. Burn Assoc., 27(3), pp. 377–385. [CrossRef]
Vaid, S. U. , Shah, A. , Michell, M. W. , Rafie, A. D. , Deyo, D. J. , Prough, D. S. , and Kramer, G. C. , 2006, “ Normotensive and Hypotensive Closed-Loop Resuscitation Using 3.0% NaCl to Treat Multiple Hemorrhages in Sheep,” Crit. Care Med., 34(4), pp. 1185–1192. [CrossRef] [PubMed]
Sagawa, K. , Maughan, W. L. , Suga, H. , and Sunagawa, K. , 1988, Cardiac Contraction and the Pressure-Volume Relationship, Oxford University Press, New York.
Santamore, W. P. , and Burkhoff, D. , 1991, “ Hemodynamic Consequences of Ventricular Interaction as Assessed by Model Analysis,” Am. J. Physiol., 260(1 Pt 2), pp. H146–H157. [PubMed]
Hay, I. , Rich, J. , Ferber, P. , Burkhoff, D. , and Maurer, M. S. , 2005, “ Role of Impaired Myocardial Relaxation in the Production of Elevated Left Ventricular Filling Pressure,” Am. J. Physiol. Heart Circ. Physiol., 288(3), pp. H1203–H1208. [CrossRef] [PubMed]
Dickstein, M. L. , Spotnitz, H. M. , Rose, E. A. , and Burkhoff, D. , 1997, “ Heart Reduction Surgery: An Analysis of the Impact on Cardiac Function,” J. Thorac. Cardiovasc. Surg., 113(6), pp. 1032–1040. [CrossRef] [PubMed]
Piene, H. , 1984, “ Impedance Matching Between Ventricle and Load,” Ann. Biomed. Eng., 12(2), pp. 191–207. [CrossRef] [PubMed]
Suga, H. , 1969, “ Time Course of Left Ventricular Pressure-Volume Relationship Under Various Enddiastolic Volume,” Jpn. Heart J., 10(6), pp. 509–515. [CrossRef] [PubMed]
Sun, J. X. , Reisner, A. T. , Saeed, M. , Heldt, T. , and Mark, R. G. , 2009, “ The Cardiac Output From Blood Pressure Algorithms Trial,” Crit. Care Med., 37(1), pp. 72–80. [CrossRef] [PubMed]
Baksi, A. J. , Treibel, T. A. , Davies, J. E. , Hadjiloizou, N. , Foale, R. A. , Parker, K. H. , Francis, D. P. , Mayet, J. , and Hughes, A. D. , 2009, “ A Meta-Analysis of the Mechanism of Blood Pressure Change With Aging,” J. Am. Coll. Cardiol., 54(22), pp. 2087–2092. [CrossRef] [PubMed]
Sunagawa, K. , Maughan, W. L. , Burkhoff, D. , and Sagawa, K. , 1983, “ Left Ventricular Interaction With Arterial Load Studied in Isolated Canine Ventricle,” Am. J. Physiol., 245(5 Pt 1), pp. H773–H780. [PubMed]
Sunagawa, K. , Maughan, W. L. , and Sagawa, K. , 1985, “ Optimal Arterial Resistance for the Maximal Stroke Work Studied in Isolated Canine Left Ventricle,” Circ. Res., 56(4), pp. 586–595. [CrossRef] [PubMed]
Kass, D. A. , and Beyar, R. , 1991, “ Evaluation of Contractile State by Maximal Ventricular Power Divided by the Square of End-Diastolic Volume,” Circulation, 84(4), pp. 1698–1708. [CrossRef] [PubMed]
Drobin, D. , and Hahn, R. G. , 2002, “ Kinetics of Isotonic and Hypertonic Plasma Volume Expanders,” J. Am. Soc. Anaesthesiol., 96(6), pp. 1371–1380. [CrossRef]
Hahn, R. G. , 2010, “ Volume Kinetics for Infusion Fluids,” Anaesthesiology, 113(2), pp. 470–481. [CrossRef]
Guyton, A. C. , Taylor, A. E. , and Granger, H. J. , 1975, Dynamics and Control of Body Fluid, W.B. Saunders Company, Philadelphia, PA.
Tousignant, C. P. , Walsh, F. , and Mazer, C. D. , 2000, “ The Use of Transesophageal Echocardiography for Preload Assessment in Critically Ill Patients,” Anesth. Analg., 90(2), pp. 351–355. [PubMed]
Michard, F. , Boussat, S. , Chemla, D. , Anguel, N. , Mercat, A. , Lecarpentier, Y. , Richard, C. , Pinsky, M. R. , and Teboul, J. L. , 2000, “ Relation Between Respiratory Changes in Arterial Pulse Pressure and Fluid Responsiveness in Septic Patients With Acute Circulatory Failure,” Am. J. Respir. Crit. Care Med., 162(1), pp. 134–138. [CrossRef] [PubMed]
Bennett-Guerrero, E. , Kahn, R. A. , Moskowitz, D. M. , Falcucci, O. , and Bodian, C. A. , 2002, “ Comparison of Arterial Systolic Pressure Variation With Other Clinical Parameters to Predict the Response to Fluid Challenges During Cardiac Surgery,” Mt. Sinai J. Med. N. Y., 69(1–2), pp. 96–100.
Diebel, L. , Wilson, R. F. , Heins, J. , Larky, H. , Warsow, K. , and Wilson, S. , 1994, “ End-Diastolic Volume Versus Pulmonary Artery Wedge Pressure in Evaluating Cardiac Preload in Trauma Patients,” J. Trauma, 37(6), pp. 950–955. [CrossRef] [PubMed]
Tavernier, B. , Makhotine, O. , Lebuffe, G. , Dupont, J. , and Scherpereel, P. , 1998, “ Systolic Pressure Variation as a Guide to Fluid Therapy in Patients With Sepsis-Induced Hypotension,” Anaesthesiology, 89(6), pp. 1313–1321. [CrossRef]
Klabunde, R. E. , 2012, Cardiovascular Physiology Concepts, Lippincott Williams and Wilkins/Wolters Kluwer, Philadelphia, PA.
Baan, J. , and Van der Velde, E. T. , 1988, “ Sensitivity of Left Ventricular End-Systolic Pressure-Volume Relation to Type of Loading Intervention in Dogs,” Circ. Res., 62(6), pp. 1247–1258. [CrossRef] [PubMed]
Kass, D. A. , Beyar, R. , Lankford, E. , Heard, M. , Maughan, W. L. , and Sagawa, K. , 1989, “ Influence of Contractile State on Curvilinearity of in Situ End-Systolic Pressure-Volume Relations,” Circulation, 79(1), pp. 167–178. [CrossRef] [PubMed]
Weissler, A. M. , Peeler, R. G. , and Roehll, W. H. , 1961, “ Relationships Between Left Ventricular Ejection Time, Stroke Volume, and Heart Rate in Normal Individuals and Patients With Cardiovascular Disease,” Am. Heart J., 62(3), pp. 367–378. [CrossRef] [PubMed]
Stafford, R. W. , Harris, W. S. , and Weissler, A. M. , 1970, “ Left Ventricular Systolic Time Intervals as Indices of Postural Circulatory Stress in Man,” Circulation, 41(3), pp. 485–492. [CrossRef] [PubMed]
Lance, V. Q. , and Spodick, D. H. , 1976, “ Ejection Time-Heart Rate Relationship During Exercise,” Cathet. Cardiovasc. Diagn., 2(2), pp. 165–173. [CrossRef] [PubMed]
Ursino, M. , 1998, “ Interaction Between Carotid Baroregulation and the Pulsating Heart: A Mathematical Model,” Am. J. Physiol., 275(5 Pt 2), pp. H1733–H1747. [PubMed]
Ursino, M. , and Magosso, E. , 2003, “ Short-Term Autonomic Control of Cardiovascular Function: A Mini-Review With the Help of Mathematical Models,” J. Integr. Neurosci., 2(2), pp. 219–247. [CrossRef] [PubMed]
Ursino, M. , and Magosso, E. , 2000, “ Acute Cardiovascular Response to Isocapnic Hypoxia. I. A Mathematical Model,” Am. J. Physiol. Heart Circ. Physiol., 279(1), pp. H149–H165. [PubMed]
Schelbert, H. R. , Verba, J. W. , Johnson, A. D. , Brock, G. W. , Alazraki, N. P. , Rose, F. J. , and Ashburn, W. L. , 1975, “ Nontraumatic Determination of Left Ventricular Ejection Fraction by Radionuclide Angiocardiography,” Circulation, 51(5), pp. 902–909. [CrossRef] [PubMed]
Heldt, T. , Shim, E. B. , Kamm, R. D. , and Mark, R. G. , 2002, “ Computational Modeling of Cardiovascular Response to Orthostatic Stress,” J. Appl. Physiol., 92(3), pp. 1239–1254. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Closed-loop fluid resuscitation via model-based estimation of relative changes in left-ventricular (LV) end-diastolic volume (EDV) as linear surrogate of relative changes in BV

Grahic Jump Location
Fig. 2

Model-based RBV estimation: (a) LV pressure–volume (P–V) loop and (b)–(d) Estimation of LV P–V loop based on BP and ECG

Grahic Jump Location
Fig. 3

Model-based smoothing of RBV. The RBV predicted by the model-based RBV estimator at the end of fifth fluid resuscitation run (δV¯(5)  = 14.8% < 15% target) was not accurate, resulting in premature fluid resuscitation that was stopped after fifth run. The model-based smoothing predicted δV¯¯(5)  = 16.1% > 15% and the fluid resuscitation continued up to eighth run, preventing premature fluid resuscitation.

Grahic Jump Location
Fig. 4

Distributions of the initial and target BV, CO, and BP

Grahic Jump Location
Fig. 5

True versus predicted EDV and SV: (a) Model-based RBV estimator and (b) PP

Grahic Jump Location
Fig. 6

True versus predicted EF

Grahic Jump Location
Fig. 7

Efficacy of run-to-run closed-loop fluid resuscitation based on predicted RBV versus PP. (a) The relative (percent) change in true EDV at the first and the last runs. The control objective was to regulate the change in the last run at 15% (green horizontal line). (b) Percent BV regulation error.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In