0
Research Papers

Gloreha—Hand Robotic Rehabilitation: Design, Mechanical Model, and Experiments

[+] Author and Article Information
Alberto Borboni

Mem. ASME
Mechanical and Industrial
Engineering Department,
Università degli Studi di Brescia,
Via Branze, 38,
Brescia 25123, Italy
e-mail: alberto.borboni@unibs.it

Maurizio Mor

Mem. ASME
Design and Research Department,
Polibrixia, Via Branze, 45,
Brescia 25123, Italy
e-mail: maurizio.mor@polibrixia.it

Rodolfo Faglia

Mem. ASME
Mechanical and Industrial
Engineering Department,
Università degli Studi di Brescia,
Via Branze, 38,
Brescia 25123, Italy
e-mail: rodolfo.faglia@unibs.it

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received October 5, 2015; final manuscript received April 18, 2016; published online July 11, 2016. Assoc. Editor: Xiaopeng Zhao.

J. Dyn. Sys., Meas., Control 138(11), 111003 (Jul 11, 2016) (12 pages) Paper No: DS-15-1480; doi: 10.1115/1.4033831 History: Received October 05, 2015; Revised April 18, 2016

Stroke patients are often affected by hand impairment. Literature shows different experiences of robotic rehabilitation that is able to prove an intensive and effective therapy. A preliminary analysis of the state of the art evidenced lacks in hand robotic rehabilitation devices. Thus, this work proposes a new rehabilitation device for hand rehabilitation based on a compliant transmission. The mechanical power generator is not on the hand to reduce the weight of the device. The mechanical model of the system is descripted. Experimental results on 126 stroke patients evidenced the efficacy of this device

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Song, D. , Lan, N. , Loeb, G. E. , and Gordon, J. , 2008, “ Model-Based Sensorimotor Integration for Multi-Joint Control: Development of a Virtual Arm Model,” Ann. Biomed. Eng., 36(6), pp. 1033–1048. [CrossRef] [PubMed]
Prange, G. B. , Jannink, M. J. A. , Groothuis-Oudshoorn, C. G. M. , Hermens, H. J. , and Ijzerman, M. J. , 2006, “ Systematic Review of the Effect of Robot-Aided Therapy on Recovery of the Hemiparetic Arm after Stroke,” J. Rehabil. Res. Dev., 43(2), pp. 171–183. [CrossRef] [PubMed]
Fulesdi, B. , Limburg, M. , Bereczki, D. , Kaplar, M. , Molnar, C. , Kappelmayer, J. , Neuwirth, G. , and Csiba, L. , 1999, “ Cerebrovascular Reactivity and Reserve Capacity in Type Ii Diabetes Mellitus,” J. Diabetes Its Complications, 13(4), pp. 191–199. [CrossRef]
Mukherjee, M. , Koutakis, P. , Siu, K. C. , Fayad, P. B. , and Stergiou, N. , 2013, “ Stroke Survivors Control the Temporal Structure of Variability During Reaching in Dynamic Environments,” Ann. Biomed. Eng., 41(2), pp. 366–376. [CrossRef] [PubMed]
Nowak, D. A. , 2008, “ The Impact of Stroke on the Performance of Grasping: Usefulness of Kinetic and Kinematic Motion Analysis,” Neurosci. Biobehav. Rev., 32(8), pp. 1439–1450. [CrossRef] [PubMed]
Salter, R. B. , 2004, “ Continuous Passive Motion: From Origination to Research to Clinical Applications,” J. Rheumatol., 31(11), pp. 2104–2105. [PubMed]
Sargsyan, S. , Arakelian, V. , and Briot, S. , 2013, “ Robotic Rehabilitation Devices of Human Extremities: Design Concepts and Functional Particularities,” ASME 11th Biennial Conference on Engineering Systems Design and Analysis 3, pp. 245–254.
Hu, X. L. , Tong, K. Y. , Song, R. , Tsang, V. S. , Leung, P. O. , and Li, L. , 2007, “ Variation of Muscle Coactivation Patterns in Chronic Stroke During Robot-Assisted Elbow Training,” Arch. Phys. Med. Rehabil., 88(8), pp. 1022–1029. [CrossRef] [PubMed]
Reinkensmeyer, D. J. , Schmit, B. D. , and Rymer, W. Z. , 1999, “ Assessment of Active and Passive Restraint During Guided Reaching after Chronic Brain Injury,” Ann. Biomed. Eng., 27(6), pp. 805–814. [CrossRef] [PubMed]
Maciejasz, P. , Eschweiler, J. , Gerlach-Hahn, K. , Jansen-Troy, A. , and Leonhardt, S. , 2014, “ A Survey on Robotic Devices for Upper Limb Rehabilitation,” J. Neuroeng. Rehabil., 11(1), p. 3. [CrossRef] [PubMed]
Gatti, C. J. , Scibek, J. , Svintsitski, O. , Carpenter, J. E. , and Hughes, R. E. , 2008, “ An Integer Programming Model for Optimizing Shoulder Rehabilitation,” Ann. Biomed. Eng., 36(7), pp. 1242–1253. [CrossRef] [PubMed]
Amici, C. , Borboni, A. , Faglia, R. , Fausti, D. , and Magnani, P. L. , 2008, “ A Parallel Compliant Meso-Manipulator for Finger Rehabilitation Treatments: Kinematic and Dynamic Analysis,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 735–740.
Balasubramanian, S. , Klein, J. , and Burdet, E. , 2010, “ Robot-Assisted Rehabilitation of Hand Function,” Curr. Opin. Neurol., 23(6), pp. 661–670. [CrossRef] [PubMed]
Frank, C. , Akeson, W. H. , Woo, S. L. Y. , Amiel, D. , and Coutts, R. D. , 1984, “ Physiology and Therapeutic Value of Passive Joint Motion,” Clin. Orthop. Relat. Res., 185, pp. 113–125. [PubMed]
Brosseau, L. , Milne, S. , Wells, G. , Tugwell, P. , Robinson, V. , Casimiro, L. , Pelland, L. , Noel, M. J. , Davis, J. , and Drouin, H. , 2004, “ Efficacy of Continuous Passive Motion Following Total Knee Arthroplasty: A Metaanalysis,” J. Rheumatol., 31(11), pp. 2251–2264. [PubMed]
Hu, X. L. , Tong, K. Y. , Song, R. , Zheng, X. J. , and Leung, W. W. F. , 2009, “ A Comparison between Electromyography-Driven Robot and Passive Motion Device on Wrist Rehabilitation for Chronic Stroke,” Neurorehabilitation Neural Repair, 23(8), pp. 837–846. [CrossRef] [PubMed]
Giudice, M. L. , 1990, “ Effects of Continuous Passive Motion and Elevation on Hand Edema,” Am. J. Occupational Therapy, 44(10), pp. 914–921. [CrossRef]
Dirette, D. , and Hinojosa, J. , 1994, “ Effects of Continuous Passive Motion on the Edematous Hands of 2 Persons With Flaccid Hemiplegia,” Am. J. Occup. Ther., 48(5), pp. 403–409. [CrossRef] [PubMed]
Seitz, A. R. , and Dinse, H. R. , 2007, “ A Common Framework for Perceptual Learning,” Curr. Opin. Neurobiol., 17(2), pp. 148–153. [CrossRef] [PubMed]
Winter, J. , Hunter, S. M. , Sim, J. , and Crome, P. , 2012, “ Hands-On Therapy Interventions for Upper Limb Motor Dysfunction after Stroke,” Stroke, 43(1), pp. E1–E2. [CrossRef]
Geurts, A. C. H. , Visschers, B. A. J. T. , Van Limbeek, J. , and Ribbers, G. M. , 2000, “ Systematic Review of Aetiology and Treatment of Post-Stroke Hand Oedema and Shoulder-Hand Syndrome,” Scand. J. Rehabil. Med., 32(1), pp. 4–10. [CrossRef] [PubMed]
Wong, J. M. , 2002, “ Management of Stiff Hand: An Occupational Therapy Perspective,” Hand Surg., 7(2), pp. 261–269. [CrossRef] [PubMed]
Cruz, E. G. , and Kamper, D. G. , 2010, “ Use of a Novel Robotic Interface to Study Finger Motor Control,” Ann. Biomed. Eng., 38(2), pp. 259–268. [CrossRef] [PubMed]
Pawluk, D. T. V. , and Howe, R. D. , 1999, “ Dynamic Lumped Element Response of the Human Fingerpad,” ASME J. Biomech. Eng., 121(2), pp. 178–183. [CrossRef]
Lenicek, I. , Ilic, D. , and Ferkovic, L. , 2013, “ High Value Resistance Comparison Using Modified Wheatstone Bridge Based on Current Detection,” Measurement, 46(10), pp. 4388–4393. [CrossRef]
Borboni, A. , and De Santis, D. , 2014, “ Large Deflection of a Non-Linear, Elastic, Asymmetric Ludwick Cantilever Beam Subjected to Horizontal Force, Vertical Force and Bending Torque at the Free End,” Meccanica, 49(6), pp. 1327–1336.
Merrien, J. L. , and Sablonniere, P. , 2013, “ Rational Splines for Hermite Interpolation With Shape Constraints,” Comput. Aided Geom. Des., 30(3), pp. 296–309. [CrossRef]
Delibasi, A. , and Henrion, D. , 2010, “ Hermite Matrix in Lagrange Basis for Scaling Static Output Feedback Polynomial Matrix Inequalities,” Int. J. Control, 83(12), pp. 2494–2505. [CrossRef]
Bao-Lian, F. , 1981, “ Energy Theorems for Solving Equations of Deflections,” Appl. Math. Mech., 2(6), pp. 765–777. [CrossRef]
Heo, P. , Gu, G. M. , Lee, S. J. , Rhee, K. , and Kim, J. , 2012, “ Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering,” Int. J. Precis. Eng. Manuf., 13(5), pp. 807–824. [CrossRef]

Figures

Grahic Jump Location
Fig. 4

Kinematic scheme of finger and orthesis

Grahic Jump Location
Fig. 1

Visualization of the measured parts of a pathological hand

Grahic Jump Location
Fig. 2

Force realized by the therapist (c) on the patient (a) and measured with a metallic bar housing four strain gauges (b)

Grahic Jump Location
Fig. 3

Wearable glove/orthesis, where 1 is the actuator block and 2 is the transmission

Grahic Jump Location
Fig. 6

Pneumatic actuation scheme

Grahic Jump Location
Fig. 5

Diagram of the system without closed-loops

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In