Research Papers

Identifiability Analysis of Finite Element Models for Vibration Response-Based Structural Damage Detection in Elastic Beams

[+] Author and Article Information
Yuhang Liu

Department of Industrial
and Systems Engineering,
University of Wisconsin-Madison, Madison,
3255 Mechanical Engineering,
1513 University Avenue,
Madison, WI 53706
e-mail: liu427@wisc.edu

Shiyu Zhou

Department of Industrial
and Systems Engineering,
University of Wisconsin-Madison, Madison,
1513 University Avenue,
Madison, WI 53706
e-mail: shiyuzhou@wisc.edu

Jiong Tang

Department of Mechanical Engineering,
University of Connecticut,
Storrs, Storrs, CT 06269
e-mail: jtang@engr.uconn.edu

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received October 25, 2015; final manuscript received June 29, 2016; published online August 19, 2016. Assoc. Editor: M. Porfiri.

J. Dyn. Sys., Meas., Control 138(12), 121006 (Aug 19, 2016) (12 pages) Paper No: DS-15-1532; doi: 10.1115/1.4034155 History: Received October 25, 2015; Revised June 29, 2016

Finite element model (FEM) is a broadly used numerical tool in structural damage detection. In such applications, damage parameters in FEM are estimated by minimizing the differences between experimental modal analysis data and the corresponding FEM model prediction. Very limited works exist on analyzing the identifiability of the FEM used in such applications. In this paper, the identifiability of FEM-based structural damage detection is investigated for undamped elastic beams. We theoretically proved that damage severity at a given location in a uniform beam is identifiable by reformulating the FEM into a linear time invariant (LTI) system. A numerical algorithm is also proposed for checking the identifiability issue of multiple damage locations. Numerical case studies are provided to validate the effectiveness and usefulness of the proposed framework.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Hamzeloo, S. R. , Shamshirsaz, M. , and Rezaei, S. M. , 2012, “ Damage Detection on Hollow Cylinders by Electro-Mechanical Impedance Method: Experiments and Finite Element Modeling,” C. R. Mec., 340(9), pp. 668–677. [CrossRef]
Stubbs, N. , Broome, T. H. , and Osegueda, R. , 1990, “ Nondestructive Construction Error Detection in Large Space Structures,” AIAA J., 28(1), pp. 146–152. [CrossRef]
Stubbs, N. , and Osegueda, R. , 1990, “ Global Non-Destructive Damage Evaluation in Solids,” Int. J. Anal. Exp. Modal Anal., 5, pp. 67–79.
Stubbs, N. , and Osegueda, R. , 1990, “ Global Damage Detection in Solids—Experimental Verification,” Int. J. Anal. Exp. Modal Anal., 5, pp. 81–97.
Shiradhonkar, S. R. , and Shrikhande, M. , 2011, “ Seismic Damage Detection in a Building Frame Via Finite Element Model Updating,” Comput. Struct., 89(23–24), pp. 2425–2438.
Mayes, R. , 1991, “ Error Localization Using Mode Shapes: An Application to a Two Link Robot Arm,” Sandia National Labs., Albuquerque, NM, Report No. SAND-91-2297C; CONF-920234–1.
Jafarkhani, R. , and Masri, S. F. , 2011, “ Finite Element Model Updating Using Evolutionary Strategy for Damage Detection,” Comput. Aided Civil Infrastruct. Eng., 26(3), pp. 207–224. [CrossRef]
Lee, J. J. , Lee, J. W. , Yi, J. H. , Yun, C. B. , and Jung, H. Y. , 2005, “ Neural Networks-Based Damage Detection for Bridges Considering Errors in Baseline Finite Element Models,” J. Sound Vib., 280(3), pp. 555–578. [CrossRef]
Wu, J. R. , and Li, Q. S. , 2006, “ Structural Parameter Identification and Damage Detection for a Steel Structure Using a Two-Stage Finite Element Model Updating Method,” J. Construct. Steel Res., 62(3), pp. 231–239. [CrossRef]
Pandey, A. K. , Biswas, M. , and Samman, M. M. , 1991, “ Damage Detection From Changes in Curvature Mode Shapes,” J. Sound Vib., 145(2), pp. 321–332. [CrossRef]
Chen, J.-C. , and Garba, J. A. , “ On-Orbit Damage Assessment for Large Space Structures,” AIAA J., 26(9), pp. 1119–1126. [CrossRef]
Chen, J.-C. , and Garba, J. A. , 1988, Structural Damage Assessment Using a System Identification Technique. Structural Safety Evaluation Based on System Identification Approaches, Vieweg+ Teubner Verlag, Berlin, pp. 474–492.
Sanayei, M. , and Onipede, O. , 1991, “ Damage Assessment of Structures Using Static Test Data,” AIAA J., 29(7), pp. 1174–1179. [CrossRef]
Sanayei, M. , Onipede, O. , and Babu, S. R. , 1992, “ Selection of Noisy Measurement Locations for Error Reduction in Static Parameter Identification,” AIAA J., 30(9), pp. 2299–2309. [CrossRef]
Liu, P.-L. , 1995, “ Identification and Damage Detection of Trusses Using Modal Data,” J. Struct. Eng., 121(4), pp. 599–608. [CrossRef]
Lim, T. W. , 1990, “ A Submatrix Approach to Stiffness Using Modal Test Data,” AIAA J., 28(6), pp. 1123–1130. [CrossRef]
Lim, T. W. , 1991, “ Structural Damage Detection Using Modal Test Data,” AIAA J., 29(12), pp. 2271–2274. [CrossRef]
Lim, T. W. , 1994, “ Structural Damage Detection of a Planar Truss Structure Using a Constrained Eigenstructure Assignment,” 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Paper No. AIAA-94-1715-CP, pp. 336–346.
Zimmerman, D. C. , and Kaouk, M. , 1994, “ Structural Damage Detection Using a Minimum Rank Update Theory,” ASME J. Vib. Acoust., 116(2), pp. 222–231. [CrossRef]
Zimmerman, D. C. , Simmermacher, T. , and Kaouk, M. , 1995, “ Structural Damage Detection Using Frequency Response Functions,” 13th International Modal Analysis Conference, Vol. 2460, pp. 375–381.
Zimmerman, D. C. , Kaouk, M. , and Simmermacher, T. , 1995, “ On the Role of Engineering Insight and Judgement Structural Damage Detection,” 13th International Modal Analysis Conference, Vol. 2460, pp. 414–420.
Chang, J.-D. , and Guo, B.-Z. , 2007, “ Identification of Variable Spacial Coefficients for a Beam Equation From Boundary Measurements,” Automatica, 43(4), pp. 732–737. [CrossRef]
Ju, F. D. , Akgun, M. , Paez, T. L. , and Wong, E. T. , 1982, “ Diagnosis of Fracture Damage in Simple Structures: A Modal Method,” New Mexico University, Albuquerque Bureau of Engineering Research, Paper No. CE-62 (82) AFOSR-993-1.
Nguyen, V. V. , and Wood, E. F. , 1982, “ Review and Unification of Linear Identifiability Concepts,” SIAM Rev., 24(1), pp. 34–51. [CrossRef]
Franco, G. , Betti, R. , and Longman, R. W. , 2006, “ On the Uniqueness of Solutions for the Identification of Linear Structural Systems,” ASME J. Appl. Mech., 73(1), pp. 153–162. [CrossRef]
De Angelis, M. , Lus, H. , Betti, R. , and Longman, R. W. , 2002, “ Extracting Physical Parameters of Mechanical Models From Identified State-Space Representations,” ASME J. Appl. Mech., 69(5), pp. 617–625. [CrossRef]
Sun, H. , Luş, H. , and Betti, R. , 2013, “ Identification of Structural Models Using a Modified Artificial Bee Colony Algorithm,” Comput. Struct., 116, pp. 59–74. [CrossRef]
Reynders, E. , 2012, “ System Identification Methods for (Operational) Modal Analysis: Review and Comparison,” Arch. Comput. Methods Eng., 19(1), pp. 51–124. [CrossRef]
Simani, S. , Fantuzzi, C. , and Patton, R. J. , 2013, Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques, Springer Science & Business Media, Berlin.
Rugh, W. J. , 1996, Linear System Theory, Vol. 2, Prentice Hall, Upper Saddle River, NJ.
Segerlind, L. J. , and Saunders, H. , 1987, Applied Finite Element Analysis, Wiley, New York.
Meurant, G. , 1992, “ A Review on the Inverse of Symmetric Tridiagonal and Block Tridiagonal Matrices,” SIAM J. Matrix Anal. Appl., 13(3), pp. 707–728. [CrossRef]
Nabben, R. , 1999, “ Decay Rates of the Inverse of Nonsymmetric Tridiagonal and Band Matrices,” SIAM J. Matrix Anal. Appl., 20(3), pp. 820–837. [CrossRef]
Demko, S. , Moss, W. F. , and Smith, P. W. , 1984, “ Decay Rates for Inverses of Band Matrices,” Math. Comput., 43(168), pp. 491–499. [CrossRef]
Eijkhout, V. , and Polman, B. , 1988, “ Decay Rates of Inverses of Banded M-Matrices That are Near to Toeplitz Matrices,” Linear Algebra Appl., 109, pp. 247–277. [CrossRef]
Yamamoto, T. , and Ikebe, Y. , 1979, “ Inversion of Band Matrices,” Linear Algebra Appl., 24, pp. 105–111. [CrossRef]
Balageas, D. , Fritzen, C.-P. , and Güemes, A. , eds., 2006, Structural Health Monitoring, Vol. 493, ISTE, London, UK.
Wang, S. Q. , and Li, H. J. , 2012, “ Assessment of Structural Damage Using Natural Frequency Changes,” Acta Mech. Sinica, 28(1), pp. 118–127. [CrossRef]
Salawu, O. S. , 1997, “ Detection of Structural Damage Through Changes in Frequency: A Review,” Eng. Struct., 19(9), pp. 718–723. [CrossRef]
Lo, S. S. , Philippe, B. , and Sameh, A. , 1987, “ A Multiprocessor Algorithm for the Symmetric Tridiagonal Eigenvalue Problem,” SIAM J. Sci. Stat. Comput., 8(2), pp. s155–s165. [CrossRef]
Trefftz, C. , Huang, C. C. , McKinley, P. K. , Li, T. Y. , and Zeng, Z. , 1995, “ A Scalable Eigenvalue Solver for Symmetric Tridiagonal Matrices,” Parallel Comput., 21(8), pp. 1213–1240. [CrossRef]
Fernandez, F. A. , Davies, J. B. , Zhu, S. , and Lu, Y. , 1991, “ Sparse Matrix Eigenvalue Solver for Finite Element Solution of Dielectric Waveguides,” Electron. Lett., 27(20), pp. 1824–1826. [CrossRef]
Gruber, R. , 1980, “ HYMNISBLOCK—Eigenvalue Solver for Blocked Matrices,” Comput. Phys. Commun., 20(3), pp. 421–428. [CrossRef]
Demmel, J. W. , Marques, O. A. , Parlett, B. N. , and Vömel, C. , 2008, “ Performance and Accuracy of LAPACK's Symmetric Tridiagonal Eigensolvers,” SIAM J. Sci. Comput., 30(3), pp. 1508–1526. [CrossRef]
Peng, D. , Middendorf, N. , Weigend, F. , and Reiher, M. , 2013, “ An Efficient Implementation of Two-Component Relativistic Exact-Decoupling Methods for Large Molecules,” J. Chem. Phys., 138(18), p. 184105. [CrossRef] [PubMed]
Beyn, W. J. , 2012, “ An Integral Method for Solving Nonlinear Eigenvalue Problems,” Linear Algebra Appl., 436(10), pp. 3839–3863. [CrossRef]
Davidson, G. G. , Evans, T. M. , Jarrell, J. J. , Hamilton, S. P. , Pandy, T. M. , and Slaybaugh, R. N. , 2014, “ Massively Parallel, Three-Dimensional Transport Solutions for the k-Eigenvalue Problem,” Nucl. Sci. Eng., 177(2), pp. 111–125. [CrossRef]
Barrett, W. W. , 1979, “ A Theorem on Inverse of Tridiagonal Matrices,” Linear Algebra Appl., 27, pp. 211–217. [CrossRef]
Engwerda, J. C. , Ran, A. M. , and Rijkeboer, A. L. , 1993, “ Necessary and Sufficient Conditions for the Existence of a Positive Definite Solution of the Matrix Equation X + A * X − 1A = Q,” Linear Algebra Appl., 186, pp. 255–275. [CrossRef]
Adams, R. D. , Cawley, P. , Pye, C. J. , and Stone, B. J. , 1978, “ A Vibration Technique for Non-Destructively Assessing the Integrity of Structures,” J. Mech. Eng. Sci., 20(2), pp. 93–100. [CrossRef]
Qian, G.-L. , Gu, S.-N. , and Jiang, J.-S. , 1990, “ The Dynamic Behaviour and Crack Detection of a Beam With a Crack,” J. Sound Vib., 138(2), pp. 233–243. [CrossRef]
Gillich, G.-R. , Praisach, Z.-I. , and Negru, I. , 2012, “ The Relationship Between Changes of Deflection and Natural Frequencies of Damaged Beams,” Advances in Remote Sensing, Finite Differences and Information Security: (F-And-B ′12),(REMOTE ′12), (ISP ′12), E. Scutelnicu , L. Lazic , and P. F. de Arroyabe , eds., Wseas LLC, Stevens Point, WI, pp. 38–42.
Hearn, G. , and Testa, R. B. , 1991, “ Modal Analysis for Damage Detection in Structures,” J. Struct. Eng., 117(10), pp. 3042–3063. [CrossRef]
Hassiotis, S. , 2000, “ Identification of Damage Using Natural Frequencies and Markov Parameters,” Comput. Struct., 74(3), pp. 365–373. [CrossRef]
Li, R. C. , 2013, “ Rayleigh Quotient Based Optimization Methods for Eigenvalue Problems,” Summary of Lectures Delivered at Gene Golub SIAM Summer School, World Scientific Publishing Company, Singapore.
Kato, T. , 2012, Perturbation Theory for Linear Operators, Springer Science & Business Media, Berlin.


Grahic Jump Location
Fig. 1

An example of finite element representation of a beam structure with n elements and n+1  nodes

Grahic Jump Location
Fig. 2

Two different experimental beam setups. (a) Fixed–fixed: both ends of the beam are fixed such that the ends can no longer move or rotate. (b) Fixed-free: one end is fixed and the other one is free to move and rotate. In (a), the collocated node for excitation and measurement is at the middle of the beam and the symmetric damage locations are shaded.

Grahic Jump Location
Fig. 3

Normalized natural frequencies computed from matrix product M−1K(p, γ ) for a fixed location p=23 versus damage parameter γ in two different beam setups. (a) Fixed–fixed uniform beam, (b) fixed-free uniform beam, (c) fixed–fixed nonuniform beam, and (d) fixed-free nonuniform beam.

Grahic Jump Location
Fig. 4

The plot Sk as a function of damage locations in different boundary conditions of a uniform beam. Three different L s are used in the calculation of Sk.

Grahic Jump Location
Fig. 5

The plot Sk as a function of damage locations in different boundary conditions of a nonuniform beam. Three different L s are used in the calculation of Sk.

Grahic Jump Location
Fig. 6

The plot Sk2|k1 as a function of damage location k1 in different boundary conditions of a uniform beam. Three different L s are used in the calculation of Sk.

Grahic Jump Location
Fig. 7

The plot Sk2|k1 as a function of damage location k1 in different boundary conditions of a nonuniform beam. Three different L s are used in the calculation of Sk.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In