0
Research Papers

Asymptotical Synchronization of Lur'e Systems Using Network Reliable Control

[+] Author and Article Information
R. Rakkiyappan

Department of Mathematics,
Bharathiar University,
Coimbatore, Tamil Nadu 641 046, India
e-mail: rakkigru@gmail.com

S. Lakshmanan

Center for Intelligent Systems Research,
Deakin University,
Waurn Ponds, Victoria 3216, Australia
e-mail: lakshm85@gmail.com

C. P. Lim

Center for Intelligent Systems Research,
Deakin University,
Waurn Ponds, Victoria 3216, Australia
e-mail: chee.lim@deakin.edu.au

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received June 15, 2015; final manuscript received July 24, 2016; published online September 22, 2016. Assoc. Editor: M. Porfiri.

J. Dyn. Sys., Meas., Control 139(1), 011004 (Sep 22, 2016) (11 pages) Paper No: DS-15-1273; doi: 10.1115/1.4034368 History: Received June 15, 2015; Revised July 24, 2016

This paper presents the synchronization criteria for two identical delayed chaotic Lur'e systems. Here, we employ network reliable feedback control for achieving synchronization between our considered systems. The advantage of the employed controller lies in the fact that it even works in the case of actuator or sensor failures, which may occur in many real-world situations. By introducing an improved Lyapunov–Krasovskii (L–K) functional and by using reciprocally convex technique, sufficient conditions are given in the form of linear matrix inequalities (LMIs) to ensure asymptotic stability of resulting synchronization error system. Numerical simulations of neural networks and Chua's circuit system are given to verify the effectiveness and less conservatism of the presented theoretical results.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Pecora, L. M. , and Carroll, T. L. , 1998, “ Master Stability Functions for Synchronized Coupled Systems,” Phys. Rev. Lett., 80(10), pp. 2109–2112. [CrossRef]
Liao, T. L. , and Tsai, S. H. , 2000, “ Adaptive Synchronization of Chaotic Systems and Its Application to Secure Communications,” Chaos, Solitons Fractals, 11(9), pp. 1387–1396. [CrossRef]
Fortuna, L. , Frasca, M. , and Rizzo, A. , 2003, “ Experimental Pulse Synchronisation of Two Chaotic Circuits,” Chaos, Solitons Fractals, 17(2), pp. 355–361. [CrossRef]
Huang, L. , Feng, R. , and Wang, M. , 2004, “ Synchronization of Chaotic Systems Via Nonlinear Control,” Phys. Lett. A, 320(4), pp. 271–275. [CrossRef]
Banerjee, S. , Theesar, S. J. S. , and Kurths, J. , 2013, “ Generalized Variable Projective Synchronization of Time Delayed Systems,” Chaos, 23(1), p. 013118. [CrossRef] [PubMed]
Min, L. , and Chen, G. , 2013, “ Generalized Synchronization in an Array of Nonlinear Dynamic Systems With Applications to Chaotic CNN,” Int. J. Bifurcation Chaos, 23(1), p. 1350016. [CrossRef]
Suykens, J. A. , Curran, P. F. , and Chua, L. O. , 1999, “ Robust Synthesis for Master–Slave Synchronization of Lur'e Systems,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 46(7), pp. 841–850. [CrossRef]
Han, X. , Lu, J. A. , and Wu, X. , 2004, “ Adaptive Feedback Synchronization of Lur'e Systems,” Chaos, Solitons Fractals, 22(1), pp. 221–227. [CrossRef]
Huang, H. , and Feng, G. , 2008, “ Robust H Synchronization of Chaotic Lur'e Systems,” Chaos, 18(3), p. 033113. [CrossRef] [PubMed]
Zhong, M. , and Han, Q. L. , 2009, “ Fault-Tolerant Master–Slave Synchronization for Lur'e Systems Using Time-Delay Feedback Control,” IEEE Trans. Circuits Syst. I: Regular Papers, 56(7), pp. 1391–1404. [CrossRef]
Huang, H. , Feng, G. , and Cao, J. , 2009, “ Exponential Synchronization of Chaotic Lur'e Systems With Delayed Feedback Control,” Nonlinear Dyn., 57(3), pp. 441–453. [CrossRef]
Lee, S. M. , Kwon, O. M. , and Park, J. H. , 2011, “ Synchronization of Chaotic Lur'e Systems With Delayed Feedback Control Using Deadzone Nonlinearity,” Chin. Phys. B, 20(1), p. 010506. [CrossRef]
Yin, C. , Zhong, S. M. , and Chen, W. F. , 2011, “ Design PD Controller for Master–Slave Synchronization of Chaotic Lur'e Systems With Sector and Slope Restricted Nonlinearities,” Commun. Nonlinear Sci. Numer. Simul., 16(3), pp. 1632–1639. [CrossRef]
Wu, Z. G. , Shi, P. , Su, H. , and Chu, J. , 2013, “ Sampled-Data Synchronization of Chaotic Lur'e Systems With Time Delays,” IEEE Trans. Neural Networks Learn. Syst., 24(3), pp. 410–421. [CrossRef]
Zhang, C. K. , Jiang, L. , He, Y. , Wu, Q. H. , and Wu, M. , 2013, “ Asymptotical Synchronization for Chaotic Lur'e Systems Using Sampled-Data Control,” Commun. Nonlinear Sci. Numer. Simul., 18(10), pp. 2743–2751. [CrossRef]
Ge, C. , Li, Z. , Huang, X. , and Shi, C. , 2014, “ New Globally Asymptotical Synchronization of Chaotic Systems Under Sampled-Data Controller,” Nonlinear Dyn., 78(4), pp. 2409–2419. [CrossRef]
Hua, C. , Ge, C. , and Guan, X. , 2015, “ Synchronization of Chaotic Lur'e Systems With Time Delays Using Sampled-Data Control,” IEEE Trans. Neural Networks Learn. Syst., 26(6), pp. 1214–1221. [CrossRef]
Ge, C. , Zhang, W. , Li, W. , and Sun, X. , 2015, “ Improved Stability Criteria for Synchronization of Chaotic Lur'e Systems Using Sampled-Data Control,” Neurocomputing, 151(Pt. 1), pp. 215–222. [CrossRef]
Fridman, E. , Seuret, A. , and Richard, J. P. , 2004, “ Robust Sampled-Data Stabilization of Linear Systems: An Input Delay Approach,” Automatica, 40(8), pp. 1441–1446. [CrossRef]
Wu, Z. G. , Park, J. H. , Su, H. , and Chu, J. , 2012, “ Discontinuous Lyapunov Functional Approach to Synchronization of Time-Delay Neural Networks Using Sampled-Data,” Nonlinear Dyn., 69(4), pp. 2021–2030. [CrossRef]
Chen, W. H. , Wei, D. , and Lu, X. , 2014, “ Global Exponential Synchronization of Nonlinear Time-Delay Lur'e Systems Via Delayed Impulsive Control,” Commun. Nonlinear Sci. Numer. Simul., 19(9), pp. 3298–3312. [CrossRef]
Lien, C. H. , Yu, K. W. , Lin, Y. F. , Chung, Y. J. , and Chung, L. Y. , 2008, “ Robust Reliable H Control for Uncertain Nonlinear Systems Via LMI Approach,” Appl. Math. Comput., 198(1), pp. 453–462. [CrossRef]
Ma, D. Z. , Zhang, H. G. , Wang, Z. S. , and Feng, J. , 2010, “ Fault Tolerant Synchronization of Chaotic Systems Based on T-S Fuzzy Model With Fuzzy Sampled-Data Controller,” Chin. Phys. B, 19(5), p. 050506. [CrossRef]
Jia, H. , Xiang, Z. , and Karimi, H. R. , 2014, “ Robust Reliable Passive Control of Uncertain Stochastic Switched Time-Delay Systems,” Appl. Math. Comput., 231, pp. 254–267. [CrossRef]
Sakthivel, R. , Santra, S. , Mathiyalagan, K. , and Arunkumar, A. , 2015, “ Reliable Robust Control Design for Uncertain Mechanical Systems,” ASME J. Dyn. Syst., Meas., Control, 137(2), p. 021003. [CrossRef]
Kuo, H. H. , Hou, Y. Y. , Yan, J. J. , and Liao, T. L. , 2009, “ Reliable Synchronization of Nonlinear Chaotic Systems,” Math. Comput. Simul., 79(5), pp. 1627–1635. [CrossRef]
Tian, E. , Yue, D. , and Peng, C. , 2010, “ Reliable Control for Networked Control Systems With Probabilistic Actuator Fault and Random Delays,” J. Franklin Inst., 347(10), pp. 1907–1926. [CrossRef]
Hu, Q. , Xiao, B. , and Friswell, M. , 2011, “ Robust Fault-Tolerant Control for Spacecraft Attitude Stabilisation Subject to Input Saturation,” IET Control Theory Appl., 5(2), pp. 271–282. [CrossRef]
Gao, Z. , Jiang, B. , Qi, R. , and Xu, Y. , 2011, “ Robust Reliable Control for a Near Space Vehicle With Parametric Uncertainties and Actuator Faults,” Int. J. Syst. Sci., 42(12), pp. 2113–2124. [CrossRef]
Hou, Y. Y. , 2013, “ Reliable Stabilization of Networked Control Systems With Actuator Faults,” Nonlinear Dyn., 71(3), pp. 447–455. [CrossRef]
Hu, H. , Jiang, B. , and Yang, H. , 2013, “ Non-Fragile H2 Reliable Control for Switched Linear Systems With Actuator Faults,” Signal Process., 93(7), pp. 1804–1812. [CrossRef]
Wang, Y. Y. , Zhou, P. F. , Wang, Q. B. , and Duan, D. P. , 2014, “ State Estimation and Reliable Control of Singular Markovian Systems With Distributed State Delays and Input Delays,” J. Optim. Theory Appl., 162(1), pp. 313–328. [CrossRef]
Yang, D. , 2016, “ Networked Reliable Synchronization of Chaotic Lur'e Systems With Sector- and Slope-Restricted Nonlinearities,” Circuits Syst. Signal Process., 35(5), pp. 1665–1675. [CrossRef]
Park, P. , Ko, J. W. , and Jeong, C. , 2011, “ Reciprocally Convex Approach to Stability of Systems With Time-Varying Delays,” Automatica, 47(1), pp. 235–238. [CrossRef]
Zhang, L. , Jiang, H. , and Bi, Q. , 2010, “ Reliable Impulsive Lag Synchronization for a Class of Nonlinear Discrete Chaotic Systems,” Nonlinear Dyn., 59(4), pp. 529–534. [CrossRef]

Figures

Grahic Jump Location
Fig. 7

State response of errors r(t) in system (18) with disturbance ω(t)= sin(t)/[0.1(1+t)]

Grahic Jump Location
Fig. 6

State response of errors r(t) in Example 3

Grahic Jump Location
Fig. 1

(a) and (b) State response of x(t) and y(t), and (c) state response of r(t)

Grahic Jump Location
Fig. 2

Chaotic attractors of Chua's circuit system

Grahic Jump Location
Fig. 3

State response of x(t) and y(t) in Example 2

Grahic Jump Location
Fig. 4

State response of errors r(t) in Example 2

Grahic Jump Location
Fig. 5

State response of errors r(t) in Example 2 for usual sampled-data control with actuator failure cases

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In