Tomizuka,
M.
, 1987, “
Zero Phase Error Tracking Algorithm for Digital Control,” ASME J. Dyn. Syst. Meas. Control,
109(1), pp. 65–68.

[CrossRef]
Astrom,
K.
, and
Wittenmark,
B.
, 1984, Computer Controlled Systems: Theory and Design,
Prentice Hall, Upper Saddle River, NJ.

Miu,
D. K.
, 1993, Mechatronics: Electromechanics and Contromechanics,
Springer, Heidelberg, Germany.

Gross,
E.
, and
Tomizuka,
M.
, 1994, “
Experimental Flexible Beam Tip Tracking Control With a Truncated Series Approximation to Uncancelable Inverse Dynamics,” IEEE Trans. Control Syst. Technol.,
2(4), pp. 382–391.

[CrossRef]
Torfs,
D.
,
De Schutter,
J.
, and
Swevers,
J.
, 1992, “
Extended Bandwidth Zero Phase Error Tracking Control of Nonminimal Phase Systems,” ASME J. Dyn. Syst. Meas. Control,
114(3), pp. 347–351.

[CrossRef]
Yamada,
M.
,
Funahashi,
Y.
, and
Fujiwara,
S.
, 1997, “
Zero Phase Error Tracking System With Arbitrarily Specified Gain Characteristics,” ASME J. Dyn. Syst. Meas. Control,
119(2), p. 260.

[CrossRef]
Yamada,
M.
,
Funahashi,
Y.
, and
Riadh,
Z.
, 1999, “
Generalized Optimal Zero Phase Error Tracking Controller Design,” ASME J. Dyn. Syst. Meas. Control,
121(2), p. 165.

[CrossRef]
Butterworth,
J. A.
,
Pao,
L. Y.
, and
Abramovitch,
D. Y.
, 2012, “
Analysis and Comparison of Three Discrete-Time Feedforward Model-Inverse Control Techniques for Nonminimum-Phase Systems,” Mechatronics,
22(5), pp. 577–587.

[CrossRef]
Fujimoto,
H.
,
Hori,
Y.
, and
Kawamura,
A.
, 2001, “
Perfect Tracking Control Based on Multirate Feedforward Control With Generalized Sampling Periods,” IEEE Trans. Ind. Electron.,
48(3), pp. 636–644.

[CrossRef]
Wen,
J. T.
, and
Potsaid,
B.
, 2004, “
An Experimental Study of a High Performance Motion Control System,” American Control Conference, pp. 5158–5163.

Weck,
M.
, and
Ye,
G.
, 1990, “
Sharp Corner Tracking Using the IKF Control Strategy,” CIRP Ann. Technol.,
39(1), pp. 437–441.

[CrossRef]
Rigney,
B. P.
,
Pao,
L. Y.
, and
Lawrence,
D. A.
, 2009, “
Nonminimum Phase Dynamic Inversion for Settle Time Applications,” IEEE Trans. Control Syst. Technol.,
17(5), pp. 989–1005.

[CrossRef]
Haack,
B.
, and
Tomizuka,
M.
, 1991, “
The Effect of Adding Zeroes to Feedforward Controllers,” ASME J. Dyn. Syst. Meas. Control,
113(1), pp. 6–10.

[CrossRef]
Hunt,
L.
,
Meyer,
G.
, and
Su,
R.
, 1996, “
Noncausal Inverses for Linear Systems,” IEEE Trans.Autom. Control,
41(4), pp. 608–611.

[CrossRef]
Devasia,
S.
,
Chen,
D.
, and
Paden,
B.
, 1996, “
Nonlinear Inversion-Based Output Tracking,” IEEE Trans. Autom. Control,
41(7), pp. 930–942.

[CrossRef]
Marro,
G.
,
Prattichizzo,
D.
, and
Zattoni,
E.
, 2002, “
Convolution Profiles for Right Inversion of Multivariable Non-Minimum Phase Discrete-Time Systems,” Automatica,
38(10), pp. 1695–1703.

[CrossRef]
Kwon,
D.-S.
, and
Book,
W. J.
, 1994, “
A Time-Domain Inverse Dynamic Tracking Control of a Single-Link Flexible Manipulator,” ASME J. Dyn. Syst. Meas. Control,
116(2), p. 193.

[CrossRef]
Zou,
Q.
, and
Devasia,
S.
, 1999, “
Preview-Based Stable-Inversion for Output Tracking of Linear Systems,” ASME J. Dyn. Syst. Meas. Control,
121(4), pp. 625–630.

[CrossRef]
Marconi,
L.
,
Marro,
G.
, and
Melchiorri,
C.
, 2001, “
A Solution Technique for Almost Perfect Tracking of Non-Minimum-Phase, Discrete-Time Linear Systems,” Int. J. Control,
74(5), pp. 496–506.

[CrossRef]
Piazzi,
A.
, and
Visioli,
A.
, 2005, “
Using Stable Input-Output Inversion for Minimum-Time Feedforward Constrained Regulation of Scalar Systems,” Automatica,
41(2), pp. 305–313.

[CrossRef]
Jetto,
L.
,
Orsini,
V.
, and
Romagnoli,
R.
, 2014, “
Accurate Output Tracking for Nonminimum Phase Nonhyperbolic and Near Nonhyperbolic Systems,” Eur. J. Control,
20(6), pp. 292–300.

[CrossRef]
Devasia,
S.
, 2011, “
Nonlinear Minimum-Time Control With Pre- and Post-Actuation,” Automatica,
47(7), pp. 1379–1387.

[CrossRef]
Devasia,
S.
, 1997, “
Output Tracking With Nonhyperbolic and Near Nonhyperbolic Internal Dynamics: Helicopter Hover Control,” J. Guid. Control Dyn.,
20(3), pp. 573–580.

[CrossRef]
Wang,
H.
,
Kim,
K.
, and
Zou,
Q.
, 2013, “
B-Spline-Decomposition-Based Output Tracking With Preview for Nonminimum-Phase Linear Systems,” Automatica,
49(5), pp. 1295–1303.

[CrossRef]
Jetto,
L.
,
Orsini,
V.
, and
Romagnoli,
R.
, 2015, “
Spline Based Pseudo-Inversion of Sampled Data Non-Minimum Phase Systems for an Almost Exact Output Tracking,” Asian J. Control,
17(5), pp. 1866–1879.

[CrossRef]
Duan,
M.
,
Ramani,
K. S.
, and
Okwudire,
C. E.
, 2015, “
Tracking Control of Non-Minimum Phase Systems Using Filtered Basis Functions: A NURBS-Based Approach,” ASME Paper No. DSCC2015-9859.

Frueh,
J. A.
, and
Phan,
M. Q.
, 2000, “
Linear Quadratic Optimal Learning Control (LQL),” Int. J. Control,
73(10), pp. 832–839.

[CrossRef]
Lunenburg,
J.
,
Bosgra,
O.
, and
Oomen,
T.
, 2009, “
Inversion-Based Feedforward Design for Beyond Rigid Body Systems: A Literature Survey,” DCT Report No. 2009.105, Eindhoven University of Technology, Eindhoven, The Netherlands.

Bay,
J. S.
, 1999, Fundamentals of Linear State Space Systems,
McGraw-Hill Science, Engineering & Mathematics, New York.

Hoaglin,
D. C.
, and
Welsch,
R. E.
, 1978, “
The Hat Matrix in Regression and ANOVA,” Am. Stat.,
32(1), pp. 17–22.

Bernstein,
D. S.
, 2009, Matrix Mathematics: Theory, Facts, and Formulas,
Princeton University Press, Princeton, NJ.

Strang,
G.
, 1993, “
The Fundamental Theorem of Linear Algebra,” Am. Math. Mon.,
100(9), pp. 848–855.

[CrossRef]
Laub,
A. J.
, 2005, Matrix Analysis for Scientists and Engineers,
SIAM, Philadelphia, PA.

Zygmund,
A.
, 1968, Trigonometric Series,
Cambridge University Press, New York.

Johnson,
L.
, and
Riess,
R.
, 1982, Numerical Analysis,
Addison-Wesley, Reading, MA.

Ye,
Y.
, and
Wang,
D.
, 2005, “
DCT Basis Function Learning Control,” IEEE/ASME Trans. Mechatronics,
10(4), pp. 449–454.

[CrossRef]
Chu,
B.
, and
Owens,
D.
, 2013, “
Singular Value Distribution of Non-Minimum Phase Systems With Application to Iterative Learning Control,” 52nd IEEE Conference on Decision and Control,
IEEE, pp. 6700–6705.

Ronde,
M.
, and
van den Bulk,
J.
, 2013, “
Feedforward for Flexible Systems With Time-Varying Performance Locations,” 2013 American Control Conference, pp. 6033–6038.

Ronde,
M.
,
van de Molengraft,
R.
, and
Steinbuch,
M.
, 2012, “
Model-Based Feedforward for Inferential Motion Systems, With Application to a Prototype Lightweight Motion System,” American Control Conference (ACC),
2012, pp. 5324–5329.

Deb,
A.
,
Sarkar,
G.
, and
Sen,
S. K.
, 1994, “
Block Pulse Functions, the Most Fundamental of all Piecewise Constant Basis Functions,” Int. J. Syst. Sci.,
25(2), pp. 351–363.

[CrossRef]
Hamamoto,
K.
, and
Sugie,
T.
, 2001, “
An Iterative Learning Control Algorithm Within Prescribed Input-Output Subspace,” Automatica,
37(11), pp. 1803–1809.

[CrossRef]
Gopinath,
S.
,
Kar,
I.
, and
Bhatt,
R.
, 2009, “
Wavelet Series Based Learning Controller Design for Kinematic Path-Tracking Control of Mobile Robot,” International Conference on Advances in Computing, Communication and Control, pp. 129–135.

Phan,
M.
, and
Frueh,
J.
, 1996, “
Learning Control for Trajectory Tracking Using Basis Functions,” 35th IEEE Conference on Decision and Control, pp. 2490–2492.

Ahmed,
N.
,
Natarajan,
T.
, and
Rao,
K. R.
, 1974, “
Discrete Cosine Transform,” IEEE Trans. Comput.,
100(1), pp. 90–93.

[CrossRef]
Rao,
K.
, and
Yip,
P.
, 1990, Discrete Cosine Transform: Algorithms, Advantages, Applications,
Academic Press Professional – Elsevier, Amsterdam, The Netherlands.

Jain,
A. K.
, 1989, Fundamentals of Digital Image Processing,
Prentice-Hall, Upper Saddle River, NJ.

Oppenheim,
A. V.
, and
Schafer,
R. W.
, 1999, Discrete-Time Signal Processing,
Prentice Hall, Upper Saddle River, NJ.

Couch,
L. W.
, 2001, Digital and Analog Communication Systems,
Prentice-Hall, Upper Saddle River, NJ.

Bardell,
P. H.
,
McAnney,
W. H.
, and
Savir,
J.
, 1987, Built-In Test for VLSI: Pseudorandom Techniques,
Wiley-Interscience, New York.

Okwudire,
C.
,
Ramani,
K.
, and
Duan,
M.
, 2016, “
A Trajectory Optimization Method for Improved Tracking of Motion Commands Using CNC Machines That Experience Unwanted Vibration,” CIRP Ann. Manuf. Technol.,
65(1), pp. 373–376.

[CrossRef]
Ramani,
K. S.
, and
Okwudire,
C. E.
, 2016, “
Regularized Filtered Basis Functions Approach for Accurate Tracking of Discrete-Time Linear Time Invariant Systems With Bounded Random Uncertainties,” ASME Paper No. DSCC2016-9885.