Research Papers

A Nonlinear State Feedback for DC/DC Boost Converters

[+] Author and Article Information
O. Gehan, E. Pigeon, M. Pouliquen

University of Caen,
6 Boulevard du Maréchal Juin,
Caen Cedex 14050, France

T. Menard

University of Caen,
6 Boulevard du Maréchal Juin,
Caen Cedex 14050, France
e-mail: tomas.menard@unicaen.fr

H. Gualous

University of Caen,
Rue Louis Aragon
Cherbourg Octeville 50 130, France

Y. Slamani, B. Tala-Ighil

University of Caen,
Rue Louis Aragon,
Cherbourg Octeville 50 130, France

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received December 4, 2015; final manuscript received August 22, 2016; published online October 17, 2016. Assoc. Editor: Ryozo Nagamune.

J. Dyn. Sys., Meas., Control 139(1), 011010 (Oct 17, 2016) (10 pages) Paper No: DS-15-1612; doi: 10.1115/1.4034602 History: Received December 04, 2015; Revised August 22, 2016

This paper investigates the control problem for static boost type converters using a high gain state feedback robust controller incorporating an integral action. The robust feature allows to achieve the required performance in the presence of parametric uncertainties, while the integral action provides an offset free performance with respect to the desired levels of voltage. The adopted high gain approach is motivated by both fundamental as well as practical considerations, namely the underlying fundamental potential and the design parameter specification simplicity. The stability and convergence analysis has been carried out using an adequate Lyapunov approach, and the control system calibration is achieved throughout a few design parameters which are closely related to the desired dynamical performances. The effectiveness of the proposed control approach has been corroborated by numerical simulations and probing experimental results.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Sahu, B. , and Rincón-Mora, G. , 2004, “ A Low Voltage, Dynamic, Noninverting, Synchronous Buck-Boost Converter for Portable Applications,” IEEE Trans. Power Electron., 19(2), pp. 443–452. [CrossRef]
Walker, G. , and Sernia, P. , 2004, “ Cascaded DC-DC Converter Connection of Photovoltaic Modules,” IEEE Trans. Power Electron., 19(4), pp. 1130–1139. [CrossRef]
Khaligh, A. , Rahimi, A. , and Emadi, A. , 2008, “ Modified Pulse-Adjustment Technique to Control DC/DC Converters Driving Variable Constant-Power Loads,” IEEE Trans. Ind. Electron., 55(3), pp. 1133–1146. [CrossRef]
Jin, K. , Ruan, X. , Yang, M. , and Xu, M. , 2009, “ A Hybrid Fuel Cell Power System,” IEEE Trans. Ind. Electron., 56(4), pp. 1212–1222. [CrossRef]
Erickson, R. , and Maksimovic, D. , 2001, Fundamentals of Power Electronics, 2nd ed., Springer-Verlag, New York.
Redl, R. , and Sokal, N. , 1986, “ Near-Optimum Dynamic Regulation of DC-DC Converters Using Feed-Forward of Output Current and Input Voltage With Current-Mode Control,” IEEE Trans. Power Electron., 3(3), pp. 181–192. [CrossRef]
Ridley, R. , 1991, “ A New, Continuous-Time Model for Current-Mode Control,” IEEE Trans. Power Electron., 6(2), pp. 271–280. [CrossRef]
Maksimovic, D. , Zane, R. , and Erickson, R. , 2004, “ Impact of Digital Control in Power Electronics,” IEEE International Symposium on Power Semiconductor Devices ICs, Sept. 20, pp. 13–22.
Morales, J. , Leyva-Ramos, J. , Carbajal, E. , and Ortiz-Lopez, M. , 2008, “ Average Current-Mode Control Scheme for a Quadratic Buck Converter With a Single Switch,” IEEE Trans. Power Electron., 23(1), pp. 485–490. [CrossRef]
Olalla, C. , Leyva, R. , El Aroudi, A. , and Garces, P. , 2009, “ QFT Robust Control of Current-Mode Converters: Application to Power Conditioning Regulators,” Int. J. Electron., 96(5), pp. 503–520. [CrossRef]
Chang, Y. , and Lai, Y. , 2009, “ Parameter Tuning Method for Digital Power Converter With Predictive Current-Mode Control,” IEEE Trans. Power Electron., 24(12), pp. 2910–2919. [CrossRef]
Leyva-Ramos, J. , and Morales-Saldana, J. , 2000, “ Uncertainty Models for Switch-Mode DC-DC Converters,” IEEE Trans. Circuits Syst. I, 47(2), pp. 200–203. [CrossRef]
Leung, F. , Tam, P. , and Li, C. , 1991, “ The Control of Switching DC-DC Converters-a General LWR Problem,” IEEE Trans. Ind. Electron., 38(1), pp. 65–71. [CrossRef]
Leung, F. , Tam, P. , and Li, C. , 1993, “ An Improved LQR-Based Controller for Switching DC-DC Converters,” IEEE Trans. Ind. Electron., 40(5), pp. 521–528. [CrossRef]
Garofalo, F. , Marino, P. , Scala, S. , and Vasca, F. , 1994, “ Control of DC-DC Converters With Linear Optimal Feedback and Nonlinear Feedforward,” IEEE Trans. Power Electron., 9(6), pp. 607–615. [CrossRef]
Leyva, R. , Martínez-Salamero, L. , Valderrama-Blavi, H. , Maixé, J. , Giral, R. , and Guinjoan, F. , 2001, “ Linear State-Feedback Control of a Boost Converter for Large-Signal Stability,” IEEE Trans. Circuits Syst. I, 48(4), pp. 418–424. [CrossRef]
Olalla, C. , Leyva, R. , El Aroudi, A. , and Queinnec, I. , 2009, “ Robust LQR Control for PWM Converters: An LMI Approach,” IEEE Trans. Ind. Electron., 56(7), pp. 2548–2558. [CrossRef]
Olalla, C. , Leyva, R. , El Aroudi, A. , Garces, P. , and Queinnec, I. , 2010, “ LMI Robust Control Design for Boost PWM Converters,” IET Power Electron., 3(1), pp. 75–85. [CrossRef]
Olalla, C. , Queinnec, I. , Leyva, R. , and El Aroudi, A. , 2012, “ Optimal State-Feedback Control of Bilinear DC–DC Converters With Guaranteed Regions of Stability,” IEEE Trans. Ind. Electron., 59(10), pp. 3868–3880. [CrossRef]
Olalla, C. , Leyva, R. , Queinnec, I. , and Maksimovic, D. , 2012, “ Robust Gain-Scheduled Control of Switched-Mode DC–DC Converters,” IEEE Trans. Power Electron., 27(6), pp. 3006–3019. [CrossRef]
Shirazi, M. , Zane, R. , and Maksimovic, D. , 2009, “ An Autotuning Digital Controller for DC–DC Power Converters Based on Online Frequency-Response Measurement,” IEEE Trans. Power Electron., 24(11), pp. 2578–2588. [CrossRef]
Ebrahimzadeh, M. , and Rahmati, A. , 2010, “ Adaptive and Fast-Response Controller for Boost PFC Converter With Wide Range of Operating Conditions,” 1st IEEE Power Electronic & Drive Systems & Technologies Conference (PEDSTC), Feb. 17–18, pp. 157–162.
Sira-Ramirez, H. , 1991, “ Nonlinear PI Controller Design for Switchmode DC-to-DC Power Converters,” IEEE Trans. Circuits Syst., 38(4), pp. 410–417. [CrossRef]
Beccuti, A. , Mariethoz, S. , Cliquennois, S. , Wang, S. , and Morari, M. , 2009, “ Explicit Model Predictive Control of DC–DC Switched-Mode Power Supplies With Extended Kalman Filtering,” IEEE Trans. Ind. Electron., 56(6), pp. 1864–1874. [CrossRef]
Sira-Ramírez, H. , Ortega, R. , and García-Esteban, M. , 1998, “ Adaptive Passivity-Based Control of Average DC-to-DC Power Converter Models,” Int. J. Adapt. Control Signal Process., 12(1), pp. 63–80. [CrossRef]
Leyva, R. , Cid-Pastor, A. , Alonso, C. , Queinnec, I. , Tarbouriech, S. , and Martinez-Salamero, L. , 2006, “ Passivity-Based Integral Control of a Boost Converter for Large-Signal Stability,” IEEE Proc. Control Theory Appl., 153(2), pp. 139–146. [CrossRef]
Sanders, S. , and Verghese, G. , 1992, “ Lyapunov-Based Control for Switched Power Converters,” IEEE Trans. Power Electron., 7(1), pp. 17–24. [CrossRef]
Alonge, F. , D'Ippolito, F. , Raimondi, F. , and Tumminaro, S. , 2007, “ Nonlinear Modeling of DC/DC Converters Using the Hammerstein's Approach,” IEEE Trans. Power Electron., 22(4), pp. 1210–1221. [CrossRef]
Alonge, F. , D'Ippolito, F. , and Cangemi, T. , 2008, “ Identification and Robust Control of DC/DC Converter Hammerstein Model,” IEEE Trans. Power Electron., 23(6), pp. 2990–3003. [CrossRef]
Feng, G. , Meyerc, E. , and Liu, Y. , 2007, “ A New Digital Control Algorithm to Achieve Optimal Dynamic Performance in DC-to-DC Converters,” IEEE Trans. Power Electron., 22(4), pp. 1489–1498. [CrossRef]
Nazarzadeh, J. , and Jafarian, M. , 2013, “ Applying Bilinear Time-Optimal Control System in Boost Converters,” IET Power Electron., 7(4), pp. 850–860. [CrossRef]
El Fadil, H. , Giri, F. , El Magueri, O. , and Chaoui, F. , 2009, “ Control of DC–DC Power Converters in the Presence of Coil Magnetic Saturation,” Control Eng. Pract., 17(7), pp. 849–862. [CrossRef]
Mattavelli, P. , Rossetto, L. , Spiazzi, G. , and Tenti, P. , 1995, “ General-Purpose Fuzzy Controller for DC/DC Converters,” IEEE Applied Power Electronics Conference and Exposition, Mar. 5–9, pp. 723–730.
Perry, A. , Feng, G. , Liu, Y. , and Sen, P. , 2007, “ A Design Method for PI-Like Fuzzy Logic Controllers for DC–DC Converter,” IEEE Trans. Ind. Electron., 54(5), pp. 2688–2696. [CrossRef]
Wai, R. , 2001, “ Total Sliding-Mode Controller for PM Synchronous Servo Motor Drive Using Recurrent Fuzzy Neural Network,” IEEE Trans. Ind. Electron., 48(5), pp. 926–944. [CrossRef]
Wai, R. , and Shih, L. , 2012, “ Adaptive Fuzzy-Neural-Network Design for Voltage Tracking Control of a DC–DC Boost Converter,” IEEE Trans. Power Electron., 27(4), pp. 2104–2115. [CrossRef]
Oucheriah, S. , and Guo, L. , 2013, “ PWM-Based Adaptive Sliding-Mode Control for Boost DC–DC Converters,” IEEE Trans. Ind. Electron., 60(8), pp. 3291–3294. [CrossRef]
Sira-Ramirez, H. , 1987, “ Sliding Motions in Bilinear Switched Networks,” IEEE Trans. Circuits Syst., 34(8), pp. 919–933. [CrossRef]
Tan, S. , Lai, Y. , Tse, C. , Martínez-Salamero, L. , and Wu, C. , 2007, “ A Fast-Response Sliding-Mode Controller for Boost-Type Converters With a Wide Range of Operating Conditions,” IEEE Trans. Ind. Electron., 54(6), pp. 3276–3286. [CrossRef]
Tan, S. , Lai, Y. , and Tse, C. , 2008, “ General Design Issues of Sliding-Mode Controllers in DC–DC Converters,” IEEE Trans. Ind. Electron., 55(3), pp. 1160–1174. [CrossRef]
Wai, R. , and Shih, L. , 2011, “ Design of Voltage Tracking Control for DC–DC Boost Converter Via Total Sliding-Mode Technique,” IEEE Trans. Ind. Electron., 58(6), pp. 2502–2511. [CrossRef]
Bédoui, A. , Farza, M. , MSaad, M. , and Ksouri, M. , 2008, “ Robust Nonlinear Controllers for Bioprocesses,” Proc., 41(2), pp. 15541–15546.
O'Reilly, J. , 1983, Observers for Linear Systems, Vol. 170, Academic Press, London.
Astrom, K. , and Hagglund, T. , 2006, Advanced PID Control, ISA, Durham, NC.
Oukaour, A. , Pouliquen, M. , Tala-Ighi, B. , Gualous, H. , Pigeon, E. , Gehan, O. , and Boudar, B. , 2013, “ Supercapacitors Aging Diagnosis Using Least Square Algorithm,” Microelectron. Reliab., 53(9–11), pp. 1638–1642. [CrossRef]
Farza, M. , MSaad, M. , and Rossignol, L. , 2004, “ Observer Design for a Class of MIMO Nonlinear Systems,” Automatica, 40(1), pp. 135–143. [CrossRef]
Khalil, H. , and Esfandiari, F. , 1993, “ Semiglobal Stabilization of a Class of Nonlinear Systems Using Output Feedback,” IEEE Trans. Autom. Control, 38(9), pp. 1412–1415. [CrossRef]
ECSS, 2004, “ Electrical and Electronic Standard,” European Cooperation for Space Standardization, ESA Requirements and Standards Division, Noordwik, The Netherlands, Standard No. ECSS-E20A.
Farza, M. , Othman, S. , Hammouri, H. , and Fick, M. , 1997, “ Discrete-Time Nonlinear Observer-Based Estimators for the On-Line Estimation of the Kinetic Rates in Bioreactors,” Bioprocess Eng., 17(4), pp. 247–255. [CrossRef]
Farza, M. , Busawon, K. , and Hammouri, H. , 1998, “ Simple Nonlinear Observers for On-Line Estimation of Kinetic Rates in Bioreactors,” Automatica, 34(3), pp. 301–318. [CrossRef]
Farza, M. , M'Saad, M. , Fall, L. , Pigeon, E. , Gehan, O. , and Mosrati, R. , 2014, “ Continuous-Discrete Time Observer for a Class of MIMO Nonlinear Systems,” IEEE Trans. Autom. Control, pp. 1060–1065.
Gauthier, J. , Hammouri, H. , and Othman, S. , 1992, “ A Simple Observer for Nonlinear Systems Applications to Bioreactors,” IEEE Trans. Autom. Control, 37(6), pp. 875–880. [CrossRef]
Khalil, H. , 2002, Nonlinear Systems, Prentice Hall PTR, Upper Saddle River, NJ.


Grahic Jump Location
Fig. 1

Electric schematic of the boost converter

Grahic Jump Location
Fig. 2

Scheme of the control law implementation presented in Sec. 3.3

Grahic Jump Location
Fig. 3

Simulated transient of the boost converter under a load step variation (R=5 Ω→R=30 Ω→R=5 Ω) with different parameter values of the nonlinear controller

Grahic Jump Location
Fig. 4

Simulated transient of the boost converter with nonlinear controller (solid line) and current-mode controller (dashed line): (a) load step transient (R: 5 Ω → 30 Ω → 5 Ω) in nominal point d = 0.5, (b) load step transient (R: 5 Ω → 30 Ω → 5 Ω) in nominal point d = 0.7, and (c) supply voltage step transient (ve: 12 V → 7 V → 12 V)

Grahic Jump Location
Fig. 5

Simulated state variables (solid lines) and estimated state variables (dashed lines): (a) estimation of vc(t), (b) estimation of il (t), (c) estimation of ve(t), and (d) estimation of ie(t)

Grahic Jump Location
Fig. 6

Experimental results: (a) output performance vc(t) and v̂c(t), (b) coil current measurement il(t) and îl(t), (c) estimated current i(t) and îe(t), (d) experimental battery voltage value ve(t) and v̂e(t) estimated value, and (e) input experimental performance u(t)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In