Xu,
L.
, and
Yao,
J.
, 1992, “
A Compensated Vector Control Scheme of a Synchronous Reluctance Motor Including Saturation and Iron Losses,” IEEE Trans. Ind. Appl.,
28(6), pp. 1330–1338.

[CrossRef]
Betz,
R. E.
,
Lagerquist,
R.
,
Jovanovic,
M.
,
Miller,
T. J. E.
, and
Middleton,
R. H.
, 1993, “
Control of Synchronous Reluctance Machines,” IEEE Trans. Ind. Appl.,
29(6), pp. 1110–1122.

[CrossRef]
Uezato,
K.
,
Senjyu,
T.
, and
Tomori,
Y.
, 1994, “
Modeling and Vector Control of Synchronous Reluctance Motors Including Stator Iron Loss,” IEEE Trans. Ind. Appl.,
30(4), pp. 971–976.

[CrossRef]
Matsuo,
T.
,
Antably,
A. E.
, and
Lipo,
T. A.
, 1997, “
A New Control Strategy for Optimum-Efficiency Operation of a Synchronous Reluctance Motor,” IEEE Trans. Ind. Appl.,
33(5), pp. 1146–1153.

[CrossRef]
Rashad,
E. M.
,
Radwan,
T. S.
, and
Rahman,
M. A.
, 2004, “
A Maximum Torque Per Ampere Vector Control Strategy for Synchronous Reluctance Motors Considering Saturation and Iron Losses,” IEEE Industry Applications Conference, Seattle, WA, Oct. 3–7, pp. 2411–2417.

Lin,
C. H.
, 2012, “
Adaptive Recurrent Wavelet Network Uncertainty Observer Based on Integral Backstepping Control for a SynRM Drive System,” Int. Rev. Electr. Eng.,
7(4), pp. 4867–4878.

Tseng,
C. Y.
,
Lue,
Y. F.
,
Lin,
Y. T.
,
Siao,
J. C.
,
Tsai,
C. H.
, and
Fu,
L. M.
, 2009, “
Dynamic Simulation Model for Hybrid Electric Scooters,” IEEE International Symposium on Industrial Electronics, Seoul, Korea, July 5–8, pp. 1464–1469.

Guzzella,
L.
, and
Schmid,
A. M.
, 1995, “
Feedback Linearization of Spark-Ignition Engines With Continuously Variable Transmissions,” IEEE Trans. Control Syst. Technol.,
3(1), pp. 54–58.

[CrossRef]
Kim,
W.
, and
Vachtsevanos,
G.
, 2000, “
Fuzzy Logic Ratio Control for a CVT Hydraulic Module,” IEEE Symposium on Intelligent Control, Rio, Greece, July 19, pp. 151–156.

Carbone,
G.
,
Mangialardi,
L.
,
Bonsen,
B.
,
Tursi,
C.
, and
Veenhuizen,
P. A.
, 2007, “
CVT Dynamics: Theory and Experiments,” Mech. Mach. Theory,
42(4), pp. 409–428.

[CrossRef]
Srivastava,
N.
, and
Haque,
I.
, 2008, “
Transient Dynamics of Metal V-Belt CVT: Effects of Bandpack Slip and Friction Characteristic,” Mech. Mach. Theory,
43(4), pp. 457–479.

[CrossRef]
Srivastava,
N.
, and
Haque,
I.
, 2009, “
A Review on Belt and Chain Continuously Variable Transmissions (CVT): Dynamics and Control,” Mech. Mach. Theory,
44(1), pp. 19–41.

[CrossRef]
Lin,
C. H.
, 2015, “
Composite Recurrent Laguerre Orthogonal Polynomials Neural Network Dynamic Control for Continuously Variable Transmission System Using Altered Particle Swarm Optimization,” Nonlinear Dyn.,
81(3), pp. 1219–1245.

[CrossRef]
Lin,
C. H.
, 2015, “
Application of V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Laguerre Orthogonal Polynomials Neural Network Control System and Modified Particle Swarm Optimization,” ASME J. Comput. Nonlinear Dyn.,
10(5), p. 051019.

[CrossRef]
Park,
B. S.
, 2015, “
Neural Network-Based Tracking Control of Underactuated Autonomous Underwater Vehicles With Model Uncertainties,” ASME J. Dyn. Syst., Meas., Control,
137(2), p. 021004.

[CrossRef]
Lungu,
R.
,
Sepcu,
L.
, and
Lungu,
M.
, 2015, “
Four-Bar Mechanism's Proportional-Derivative and Neural Adaptive Control for the Thorax of the Micromechanical Flying Insects,” ASME J. Dyn. Syst., Meas., Control,
137(5), p. 051005.

[CrossRef]
Gao,
S.
,
Dong,
H.
,
Lyu,
S.
, and
Ning,
B.
, 2015, “
Truncated Adaptation Design for Decentralized Neural Dynamic Surface Control of Interconnected Nonlinear Systems Under Input Saturation,” Int. J. Control,
89(7), pp. 1–29.

Gao,
S.
,
Dong,
H.
,
Ning,
B.
, and
Sun,
X.
, 2015, “
Neural Adaptive Control for Uncertain MIMO Systems With Constrained Input Via Intercepted Adaptation and Single Learning Parameter Approach,” Nonlinear Dyn.,
82(3), pp. 1109–1126.

[CrossRef]
Ye,
J.
, 2005, “
Analog Compound Orthogonal Neural Network Control of Robotic Manipulators,” Proc. SPIE 6042, ICMIT: Control Systems and Robotics, Chongqing, China, Sept. 20, p. 60422L.

Ye,
J.
, and
Zhao,
Y.
, 2006, “
Application of an Analog Compound Orthogonal Neural Network in Robot Control,” International Conference on Sensing, Computing and Automation, Chongqing, China, pp. 455–458.

Ye,
J.
, 2008, “
Tracking Control for Nonholonomic Mobile Robots: Integrating the Analog Neural Network Into the Backstepping Technique,” Neurocomputing,
71(16–18), pp. 3373–3378.

[CrossRef]
Belmehdi,
S.
, 2001, “
Generalized Gegenbauer Orthogonal Polynomials,” J. Comput. Appl. Math.,
133(1–2), pp. 195–205.

[CrossRef]
Wu,
C.
,
Zhang,
H.
, and
Fang,
T.
, 2007, “
Flutter Analysis of an Airfoil With Bounded Random Parameters in Incompressible Flow Via Gegenbauer Polynomial Approximation,” Aerosp. Sci. Technol.,
11(7–8), pp. 518–526.

[CrossRef]
Zhang,
Y.
, and
Li,
W.
, 2009, “
Gegenbauer Neural Network and Its Weights-Direct Determination Method,” IET Electron. Lett.,
45(23), pp. 1184–1185.

[CrossRef]
Li,
X. D.
,
Ho,
J. K. L.
, and
Chow,
T. W. S.
, 2005, “
Approximation of Dynamical Time-Variant Systems by Continuous-Time Recurrent Neural Networks,” IEEE Trans. Circuits Syst. II,
52(10), pp. 656–660.

[CrossRef]
Lin,
C. H.
, 2013, “
Recurrent Modified Elman Neural Network Control of PM Synchronous Generator System Using Wind Turbine Emulator of PM Synchronous Servo Motor Drive,” Int. J. Electric. Power Energy Syst.,
52(1), pp. 143–160.

[CrossRef]
Lin,
C. H.
, 2014, “
Dynamic Control for Permanent Magnet Synchronous Generator System Using Novel Modified Recurrent Wavelet Neural Network,” Nonlinear Dyn.,
77(4), pp. 1261–1284.

[CrossRef]
Lin,
C. H.
, 2016, “
Modeling and Control of Six-Phase Induction Motor Servo-Driven Continuously Variable Transmission System Using Blend Modified Recurrent Gegenbauer Orthogonal Polynomial Neural Network Control System and Amended Artificial Bee Colony Optimization,” Int. J. Numer. Modell.: Electron. Networks, Devices Fields,
29(5), pp. 915–942.

[CrossRef]
Lin,
C. H.
, 2016, “
A Six-Phase CRIM Driving CVT Using Blend Modified Recurrent Gegenbauer OPNN Control,” J. Power Electron.,
16(4), pp. 1438–1454.

[CrossRef]
Karaboga,
D.
, 2005, “
An Idea Based on Honey Bee Swarm for Numerical Optimization,” Computer Engineering Department, Erciyes University, Kayseri, Turkey, Technical Report No. TR06.

Karaboga,
D.
, and
Basturk,
B.
, 2007, “
A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm,” J. Global Optim.,
39(3), pp. 459–471.

[CrossRef]
Karaboga,
D.
, and
Basturk,
B.
, 2007, Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems, (Lecture Notes in Artificial Intelligence), Vol.
4529, pp. 789–798.

Karaboga,
D.
, and
Basturk,
B.
, 2008, “
On the Performance of Artificial Bee Colony (ABC) Algorithm,” Appl. Soft Comput.,
8(1), pp. 687–697.

[CrossRef]
Xiang,
W.
, and
An,
M.
, 2013, “
An Efficient and Robust Artificial Bee Colony Algorithm for Numerical Optimization,” Comput. Oper. Res.,
40(5), pp. 1256–1265.

[CrossRef]
Biswas,
S.
,
Das,
S.
,
Debchoudhury,
S.
, and
Kundu,
S.
, 2014, “
Coevolving Bee Colonies by Forager Migration: A Multi-Swarm Based Artificial Bee Colony Algorithm for Global Search Space,” Appl. Math. Comput.,
232(1), pp. 216–234.

Ahrari,
A.
, and
Atai,
A. A.
, 2010, “
Grenade Explosion Method-a Novel Tool for Optimization of Multimodal Functions,” Appl. Soft Comput.,
10(4), pp. 1132–1140.

[CrossRef]
Zhang,
C.
,
Zheng,
J.
, and
Zhou,
Y.
, 2015, “
Two Modified Artificial Bee Colony Algorithms Inspired by Grenade Explosion Method,” Neurocomputing,
151(3), pp. 1198–1207.

[CrossRef]
Alizadegan,
A.
,
Asady,
B.
, and
Ahmadpour,
M.
, 2013, “
Two Modified Versions of Artificial Bee Colony Algorithm,” Appl. Math. Comput.,
225(1), pp. 601–609.

Mansouri,
P.
,
Asady,
B.
, and
Gupta,
N.
, 2015, “
The Bisection–Artificial Bee Colony Algorithm to Solve Fixed Point Problems,” Appl. Soft Comput.,
26(1), pp. 143–148.

[CrossRef]
Lin,
C. H.
, 2014, “
Hybrid Recurrent Wavelet Neural Network Control of PMSM Servo-Drive System for Electric Scooter,” Int. J. Control, Autom. Syst.,
12(1), pp. 177–187.

[CrossRef]
Lin,
C. H.
, 2015, “
Dynamic Control of V-Belt Continuously Variable Transmission Driven Electric Scooter Using Hybrid Modified Recurrent Legendre Neural Network Control System,” Nonlinear Dyn.,
79(2), pp. 787–808.

[CrossRef]
Lin,
C. H.
, 2015, “
Novel Adaptive Recurrent Legendre Neural Network Control for PMSM Servo-Drive Electric Scooter,” ASME J. Dyn. Syst., Meas., Control,
137(1), p. 011010.

[CrossRef]
Ziegler,
J. G.
, and
Nichols,
N. B.
, 1942, “
Optimum Settings for Automatic Controllers,” Trans. ASME,
64, pp. 759–768.

Astrom,
K. J.
, and
Hagglund,
T.
, 1995, PID Controller: Theory, Design, and Tuning,
Instrument Society of America,
Research Triangle Park, NC.

Hagglund,
T.
, and
Astrom,
K. J.
, 2004, “
Revisiting the Ziegler-Nichols Tuning Rules for PI Control—Part II: the Frequency Response Method,” Asian J. Control,
6(4), pp. 469–482.

[CrossRef]
Slotine,
J. J. E.
, and
Li,
W.
, 1991, Applied Nonlinear Control,
Prentice Hall,
Englewood Cliffs, NJ.

Astrom,
K. J.
, and
Wittenmark,
B.
, 1995, Adaptive Control,
Addison-Wesley,
New York.