Research Papers

Linear Matrix Inequality Robust Tracking Control Conditions for Nonlinear Disturbed Interconnected Systems

[+] Author and Article Information
Ali Sghaier Tlili

Laboratory of Advanced Systems,
Polytechnic School of Tunisia,
BP. 743, La Marsa,
Tunis 2078, Tunisia
e-mail: ali.tlili@ept.rnu.tn

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received April 16, 2016; final manuscript received November 29, 2016; published online March 22, 2017. Assoc. Editor: Zongxuan Sun.

J. Dyn. Sys., Meas., Control 139(6), 061002 (Mar 22, 2017) (8 pages) Paper No: DS-16-1192; doi: 10.1115/1.4035404 History: Received April 16, 2016; Revised November 29, 2016

The objective of this paper is to develop a robust decentralized observer-based feedback model reference tracking control approach for a class of nonlinear disturbed interconnected systems. The proposed H control and observation design method is formulated within an optimization problem involving linear matrix inequalities (LMIs), efficiently solved by a one-step LMI procedure, to compute the decentralized observation and control gain matrices of each subsystem, and to attenuate the external disturbances affecting the subsystems by minimizing a H performance criterion. A numerical simulation is highlighted on a power system with three-interconnected machines to demonstrate the effectiveness of the developed control approach despite the interconnections between different generators, nonlinearities in the system, and external disturbances.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Sun, J. , Fujimoto, K. , Dou, C. , Zhong, J. , and Yuan, S. , 2006, “ H Fuzzy Tracking Control for Multimachine Interconnected Power System With Model Uncertainties,” Int. J. Innovative Comput. Inf. Control, 2, pp. 61–68.
Xua, D. , Jiang, B. , Liu, H. , and Shi, P. , 2013, “ Decentralized Asymptotic Fault Tolerant Control of Near Space Vehicle With High Order Actuator Dynamics,” J. Franklin Inst., 350(9), pp. 2519–2534. [CrossRef]
DeLellis, P. , diBernardo, M. , and Garofalo, F. , 2009, “ Novel Decentralized Adaptive Strategies for the Synchronization of Complex Networks,” Automatica, 45(5), pp. 1312–1318. [CrossRef]
Tan, K. K. , Huang, S. , and Lee, T. H. , 2009, “ Decentralized Adaptive Controller Design of Large-Scale Uncertain Robotic Systems,” Automatica, 45(1), pp. 161–166. [CrossRef]
Tong, S. , and Li, Y. , 2013, “ Adaptive Fuzzy Decentralized Output Feedback Control for Nonlinear Large-Scale Systems With Unknown Dead-Zone Inputs,” IEEE Trans. Fuzzy Syst., 21(5), pp. 913–925. [CrossRef]
Siljak, D. D. , and Stipanovic, D. M. , 2000, “ Robust Stabilization of Nonlinear Systems: The LMI Approach,” Math. Probl. Eng., 6(5), pp. 461–493. [CrossRef]
Yang, G. H. , and Zhang, S. Y. , 1996, “ Decentralized Robust Control for Interconnected Systems With Time-Varying Uncertainties,” Automatica, 32(11), pp. 1603–1608. [CrossRef]
Guo, Y. , Hill, D. J. , and Wang, Y. , 2000, “ Nonlinear Decentralized Control of Large-Scale Power Systems,” Automatica, 36(9), pp. 1275–1289. [CrossRef]
Zhai, J. , and Du, H. , 2013, “ Semi-Global Output Feedback Stabilization for a Class of Nonlinear Systems Using Homogeneous Domination Approach,” ISA Trans., 52(2), pp. 231–241. [CrossRef] [PubMed]
Ming-Hong, L. , Jason-Sheng, H. T. , Chia-Wei, C. , Shu-Mei, G. , and Che-An, C. , 2010, “ Digital Redesign of the Decentralised Adaptive Tracker for Linear Large-Scale Systems,” Int. J. Syst. Sci., 41(2), pp. 173–187. [CrossRef]
Xudong, Y. , 2009, “ Pseudo-Decentralized Adaptive Stabilization of Large-Scale Feedforward Nonlinear Systems,” Automatica, 45, pp. 1232–1236. [CrossRef]
Wu, L. B. , and Yang, G. H. , 2016, “ Decentralized Adaptive Fuzzy Fault-Tolerant Tracking Control of Large-Scale Nonlinear Systems With Actuator Failures,” Neurocomputing, 179, pp. 307–317. [CrossRef]
Tong, S. , and Li, H. H. , 2002, “ Observer Based Robust Fuzzy Control of Nonlinear Systems With Parametric Uncertainties,” Fuzzy Sets Syst., 131(2), pp. 165–184. [CrossRef]
Siljak, D. D. , 1991, Decentralized Control of Complex Systems, Academic Press, New York.
Yan, X. G. , Lam, J. , Li, H. S. , and Chen, I. M. , 2000, “ Decentralized Control of Nonlinear Large-Scale Systems Using Dynamic Output Feedback,” J. Optim. Theory Appl., 104(2), pp. 459–475. [CrossRef]
Kim, H. J. , Koo, G. B. , Park, J. B. , and Joo, Y. H. , 2015, “ Decentralized Sampled-Data H Fuzzy Filter for Nonlinear Large-Scale Systems,” Fuzzy Sets Syst., 273, pp. 68–86. [CrossRef]
Dhbaibi, S. , Tlili, A. S. , Elloumi, S. , and Benhadj Braiek, N. , 2009, “ H Decentralized Observation and Control of Nonlinear Interconnected Systems,” ISA Trans., 48(4), pp. 458–467. [CrossRef] [PubMed]
Elmahdi, A. , Taha, A. F. , Sun, D. , and Panchal, J. H. , 2015, “ Decentralized Control Framework and Stability Analysis for Networked Control Systems,” ASME J. Dyn. Syst., Meas., Control, 137(5), p. 051006. [CrossRef]
Atassi, A. N. , and Khalil, H. K. , 1999, “ A Separation Principle for the Stabilization of a Class of Nonlinear Systems,” IEEE Trans. Autom. Control, 44(9), pp. 1672–1687. [CrossRef]
Hassibi, A. , How, J. , and Boyd, S. , 1999, “ A Path Following Method for Solving BMI Problems in Control,” American Control Conference, San Diego, CA, pp. 1385–1389.
Mansouri, B. , Manamanni, N. , Guelton, K. , Kruszewski, A. , and Guerra, T. M. , 2009, “ Output Feedback LMI Tracking Control Conditions With H Criterion for Uncertain and Disturbed T-S Models,” Information Sciences, 179, pp. 446–457.
Al-Khayyal, F. A. , 1990, “ Jointly Constrained Bilinear Programs and Related Problems. An Overview,” Comput. Math. Appl., 19(11), pp. 53–62. [CrossRef]
Dhawan, A. , and Kar, H. , 2011, “ LMI Approach to Suboptimal Guaranteed Cost Control for 2-D Discrete Uncertain Systems,” J. Signal Inf. Process., 2, pp. 292–300.
Tlili, A. S. , and Benhadj Braiek, N. , 2009, “ Decentralized Observer Based Guaranteed Cost Control for Nonlinear Interconnected Systems,” Int. J. Control Autom., 2(2), pp. 19–34.
Tseng, C. S. , and Chen, B. S. , 2001, “ H Decentralized Fuzzy Model Reference Tracking Control Design for Nonlinear Interconnected Systems,” IEEE Trans. Fuzzy Syst., 9(6), pp. 795–809. [CrossRef]
Pipelzadeh, Y. , Chaudhuri, B. , and Green, T. C. , 2013, “ Control Coordination Within a VSC HVDC Link for Power Oscillation Damping: A Robust Decentralized Approach Using Homotopy,” IEEE Trans. Control Syst. Technol., 21(4), pp. 1270–1279. [CrossRef]
Mirkin, B. , Gutman, P. O. , and Shtessel, Y. , 2012, “ Coordinated Decentralized Sliding Mode MRAC With Control Cost Optimization for a Class of Nonlinear Systems,” J. Franklin Inst., 349(4), pp. 1364–1379. [CrossRef]
Ning, Z. , Yu, J. , Xing, X. , and Wang, H. , 2016, “ Robust Adaptive Decentralized Control for a Class of Noaffine Stochastic Nonlinear Interconnected Systems,” Neurocomputing, 171, pp. 532–539. [CrossRef]
Wu, H. , 2012, “ Decentralized Adaptive Robust Control of Uncertain Large-Scale Nonlinear Dynamical Systems With Time-Varying Delays,” IET Control Theory Appl., 6(5), pp. 629–640. [CrossRef]
Elloumi, S. , Abidi, B. , and Benhadj Braiek, N. , 2013, “ Decentralized Optimal Controller Design for Multimachine Power Systems Using Successive Approximation Approach,” J. Franklin Inst., 350(10), pp. 2994–3010. [CrossRef]
Yoo, S. J. , 2010, “ Decentralized Adaptive Control Of A Class Of Interconnected Non-Linear Systems With Unknown Time Delays and Dead-Zone Inputs,” IET Control Theory and Appl., 4(11), pp. 2639–2650. [CrossRef]
Pagilla, P. R. , and Zhu, Y. , 2005, “ A Decentralized Output Feedback Controller for a Class of Large-Scale Interconnected Nonlinear Systems,” ASME J. Dyn. Syst., Meas., Control, 127(1), pp. 167–172. [CrossRef]
Xiao, X. , and Mao, Z. , 2011, “ Decentralized Guaranteed Cost Stabilization of Time-Delay Large-Scale Systems Based on Reduced-Order Observers,” J. Franklin Inst., 348(9), pp. 2689–2700. [CrossRef]
Mahmoud, M. S. , and Hussain, M. M. , 2013, “ Decentralized H Controller Design for a Multi-Zone Space Heating System,” J. Franklin Inst., 350(10), pp. 3064–3081. [CrossRef]
Zhu, Y. , and Pagilla, P. R. , 2007, “ Decentralized Output Feedback Control of a Class of Large-Scale Interconnected Systems,” IMA J. Math. Control Inf., 24, pp. 57–69. [CrossRef]
Kim, B. Y. , Kim, Y. S. , and Ahn, H. S. , 2013, “ Stability Analysis of Spatially Interconnected Discrete-Time Systems With Random Delays and Structured Uncertainties,” J. Franklin Inst., 350, pp. 1719–1738. [CrossRef]
Jiang, L. , Wu, Q. H. , and Wen, J. Y. , 2004, “ Decentralized Nonlinear Adaptive Control for Multimachine Power Systems Via High Gain Perturbation Observer,” Trans. Circuits Syst., 51(10), pp. 2052–2059. [CrossRef]
Soliman, H. M. , Dabroum, A. , Mahmoud, M. S. , and Soliman, M. , 2011, “ Guaranteed-Cost Reliable Control With Regional Pole Placement of a Power System,” J. Franklin Inst., 348, pp. 884–898. [CrossRef]
Mao, W. J. , and Chu, J. , 2010, “ Robust Decentralized Stabilisation of Interval Discrete-Time Singular Large-Scale Systems,” IET Control Theory Appl., 4(2), pp. 244–252. [CrossRef]
Li, W. , Gui, W. H. , Xi, Y. F. , and Ding, S. X. , 2010, “ Decentralized Fault Detection of Large-Scale Systems With Limited Network Communications,” IET Control Theory Appl., 4(9), pp. 1867–1876. [CrossRef]
Pujol, G. , 2009, “ Reliable H∞ Control of A Class of Uncertain Interconnected Systems: An LMI Approach,” Int. J. Systems Science, 40(6), pp. 649–657. [CrossRef]
Koo, G. B. , Park, J. B. , and Joo, Y. H. , 2016, “ Sampled-Data Observer-Based Decentralized Fuzzy Control for Nonlinear Large-Scale Systems,” J. Electr. Eng. Technol., 11(3), pp. 724–732. [CrossRef]
Zecevic, A. I. , and Siljak, D. D. , 2008, “ Control Design With Arbitrary Information Structure Constraints,” Automatica, 44(10), pp. 2642–2647. [CrossRef]
Tlili, A. S. , and Benhadj Braiek, N. , 2012, “ Systematic Linear Matrix Inequality Conditions to Design a Robust Decentralized Observer-Basednoptimal Control for Interconnected Systems,” IET Control Theory Appl., 6(18), pp. 2737–2747. [CrossRef]
Tlili, A. S. , and Benhadj Braiek, N. , 2014, “ H Optimization-Based Decentralized Control of Linear Interconnected Systems With Nonlinear Interconnections,” J. Franklin Inst., 351(6), pp. 3286–3304. [CrossRef]
Chen, B. S. , and Chen, Y. Y. , 2002, “ Nonlinear Fuzzy H Guidance Law With Saturation of Actuators Against Maneuvering Targets,” IEEE Trans. Control Syst., 10(6), pp. 769–779. [CrossRef]
Wen, S. , Zeng, Z. , Huang, T. , and Bao, G. , 2013, “ Observer-Based H Control of a Class of Mixed Delay Systems With Random Data Losses and Stochastic Nonlinearities,” ISA Trans., 52(2), pp. 207–214. [CrossRef] [PubMed]
Gahinet, P. , and Apkarian, P. , 1994, “ A Linear Matrix Inequality Approach to Control,” Int. J. Robust Nonlinear Control, 4(4), pp. 421–448. [CrossRef]
Guerra, T. M. , Kruszewski, A. , Vermeiren, L. , and Tirmant, H. , 2006, “ Conditions of Output Stabilization of Nonlinear Models in the Takagi-Sugeno's Form,” Fuzzy Sets Syst., 157(9), pp. 1248–1259. [CrossRef]
Tlili, A. S. , Dhbaibi, S. , and Benhadj Braiek, N. , 2012, “ Robust Decentralized Observer Based Guaranteed Cost Control for Nonlinear Uncertain Interconnected Systems. Application to Multi-Machine Power Systems,” Int. J. Syst. Sci., 43(9), pp. 1713–1727. [CrossRef]
Wang, Y. , Hill, D. J. , and Guo, G. , 1998, “ Robust Decentralized Control for Multi-Machine Power Systems,” IEEE Trans. Circuits Syst., 45(3), pp. 271–279. [CrossRef]


Grahic Jump Location
Fig. 1

A power system with three-interconnected machines

Grahic Jump Location
Fig. 4

Robust control laws ui, i = 1, 2, 3, of the three-machine power system in the case of strong disturbances

Grahic Jump Location
Fig. 2

Robust tracking control of the three-machine power system toward strong disturbances applied on wi, i = 1, 2, 3

Grahic Jump Location
Fig. 3

Observation errors eΔδi, eωi, eΔPmi, and eΔXei, i = 1, 2, 3, of the three-machine power system in the case of strong disturbances




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In