0
Research Papers

Linear Matrix Inequality Robust Tracking Control Conditions for Nonlinear Disturbed Interconnected Systems

[+] Author and Article Information
Ali Sghaier Tlili

Laboratory of Advanced Systems,
Polytechnic School of Tunisia,
BP. 743, La Marsa,
Tunis 2078, Tunisia
e-mail: ali.tlili@ept.rnu.tn

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received April 16, 2016; final manuscript received November 29, 2016; published online March 22, 2017. Assoc. Editor: Zongxuan Sun.

J. Dyn. Sys., Meas., Control 139(6), 061002 (Mar 22, 2017) (8 pages) Paper No: DS-16-1192; doi: 10.1115/1.4035404 History: Received April 16, 2016; Revised November 29, 2016

The objective of this paper is to develop a robust decentralized observer-based feedback model reference tracking control approach for a class of nonlinear disturbed interconnected systems. The proposed H control and observation design method is formulated within an optimization problem involving linear matrix inequalities (LMIs), efficiently solved by a one-step LMI procedure, to compute the decentralized observation and control gain matrices of each subsystem, and to attenuate the external disturbances affecting the subsystems by minimizing a H performance criterion. A numerical simulation is highlighted on a power system with three-interconnected machines to demonstrate the effectiveness of the developed control approach despite the interconnections between different generators, nonlinearities in the system, and external disturbances.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Fig. 1

A power system with three-interconnected machines

Grahic Jump Location
Fig. 2

Robust tracking control of the three-machine power system toward strong disturbances applied on wi, i = 1, 2, 3

Grahic Jump Location
Fig. 3

Observation errors eΔδi, eωi, eΔPmi, and eΔXei, i = 1, 2, 3, of the three-machine power system in the case of strong disturbances

Grahic Jump Location
Fig. 4

Robust control laws ui, i = 1, 2, 3, of the three-machine power system in the case of strong disturbances

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In