0
Research Papers

Adjoint-Based Optimization Procedure for Active Vibration Control of Nonlinear Mechanical Systems

[+] Author and Article Information
Carmine M. Pappalardo

Department of Industrial Engineering,
University of Salerno,
Via Giovanni Paolo II,
Fisciano, Salerno 132, 84084, Italy
e-mail: cpappalardo@unisa.it

Domenico Guida

Professor
Department of Industrial Engineering,
University of Salerno,
Via Giovanni Paolo II,
Fisciano, Salerno 132, 84084, Italy
e-mail: guida@unisa.it

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received October 15, 2016; final manuscript received December 15, 2016; published online May 24, 2017. Assoc. Editor: Davide Spinello.

J. Dyn. Sys., Meas., Control 139(8), 081010 (May 24, 2017) (11 pages) Paper No: DS-16-1501; doi: 10.1115/1.4035609 History: Received October 15, 2016; Revised December 15, 2016

In this paper, a new computational algorithm for the numerical solution of the adjoint equations for the nonlinear optimal control problem is introduced. To this end, the main features of the optimal control theory are briefly reviewed and effectively employed to derive the adjoint equations for the active control of a mechanical system forced by external excitations. A general nonlinear formulation of the cost functional is assumed, and a feedforward (open-loop) control scheme is considered in the analytical structure of the control architecture. By doing so, the adjoint equations resulting from the optimal control theory enter into the formulation of a nonlinear differential-algebraic two-point boundary value problem, which mathematically describes the solution of the motion control problem under consideration. For the numerical solution of the problem at hand, an adjoint-based control optimization computational procedure is developed in this work to effectively and efficiently compute a nonlinear optimal control policy. A numerical example is provided in the paper to show the principal analytical aspects of the adjoint method. In particular, the feasibility and the effectiveness of the proposed adjoint-based numerical procedure are demonstrated for the reduction of the mechanical vibrations of a nonlinear two degrees-of-freedom dynamical system.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bryson, A. E. , and Ho, Y. C. , 1975, Applied Optimal Control—Optimization, Estimation, and Control, Taylor and Francis, New York.
Luchini, P. , and Bottaro, A. , 2014, “ An Introduction to Adjoint Problems,” Annu. Rev. Fluid Mech., Suppl. Append. A, 46, pp. 493–517. [CrossRef]
Luchini, P. , and Bottaro, A. , 2014, “ Adjoint Equations in Stability Analysis,” Annu. Rev. Fluid Mech., 46, pp. 493–517. [CrossRef]
Bewley, T. R. , 2015, Numerical Renaissance—Simulation, Optimization and Control, Renaissance Press, San Diego, CA, epub.
Bertsekas, D. P. , 2005, Dynamic Programming and Optimal Control—Volume I, Athena Scientific, Belmont, MA.
Bertsekas, D. P. , 2005, Dynamic Programming and Optimal Control—Volume II, Athena Scientific, Belmont, MA.
Bellman, R. E. , and Dreyfus, S. E. , 1962, Applied Dynamic Programming, Oxford University Press, London.
Bewley, T. R. , 2001, “ Flow Control—New Challenges for a New Renaissance,” Prog. Aerosp. Sci., 37(1), pp. 21–58. [CrossRef]
Kim, J. , and Bewley, T. R. , 2007, “ A Linear Systems Approach to Flow Control,” Annu. Rev. Fluid Mech., 39(1), pp. 383–417. [CrossRef]
Giles, M. B. , and Pierce, N. A. , 2000, “ An Introduction to the Adjoint Approach to Design,” J. Flow, Turbul., Combust., 65, pp. 393–415. [CrossRef]
Giannetti, F. , and Luchini, P. , 2006, “ Leading-Edge Receptivity by Adjoint Methods,” J. Fluid Mech., 547, pp. 21–53. [CrossRef]
Giannetti, F. , Camarri, S. , and Luchini, P. , 2010, “ Structural Sensitivity of the Secondary Instability in the Wake of a Circular Cylinder,” J. Fluid Mech., 651, pp. 319–337. [CrossRef]
Bewley, T. , Luchini, P. , and Pralits, J. , 2016, “ Methods for the Solution of Large Optimal Control Problems That Bypass Open-Loop Model Reduction,” Meccanica, 51(12), pp. 2997–3014. [CrossRef]
Schmidt-Wetekam, C. , Zhang, D. , Hughes, R. , and Bewley, T. R. , 2007, “ Design, Optimization, and Control of a New Class of Reconfigurable Hopping Rovers,” 46th IEEE Conference on Decision and Control, New Orleans, LA, Dec. 12–14, pp. 5150–5155.
Summers, S. , and Bewley, T. R. , 2007, “ MPDopt—A Versatile Toolbox for Adjoint-Based Model Predictive Control of Smooth and Switched Nonlinear Dynamic Systems,” 46th IEEE Conference on Decision and Control, New Orleans, LA, Dec. 12–14, pp. 4785–4790.
Bewley, T. R. , Temam, R. , and Zianed, M. , 2000, “ A General Framework for Robust Control in Fluid Mechanics,” Physica D, 138(3–4), pp. 360–392. [CrossRef]
Mariti, L. , Belfiore, N. P. , Pennestri, E. , and Valentini, P. P. , 2011, “ Comparison of Solution Strategies for Multibody Dynamics Equations,” Int. J. Numer. Methods Eng., 88(7), pp. 637–656. [CrossRef]
Nayfeh, A. H. , and Mook, D. T. , 1995, Nonlinear Oscillations, Wiley, New York.
Antman, S. S. , 2005, Nonlinear Problems of Elasticity, 2nd ed., Springer, New York.
Meirovitch, L. , 2010, Fundamentals of Vibrations, McGraw Hill, Boston.
Ashour, O. N. , and Nayfeh, A. H. , 2002, “ Adaptive Control of Flexible Structures Using a Nonlinear Vibration Absorber,” J. Nonlinear Dyn., 28, pp. 309–322. [CrossRef]
Siciliano, B. , Sciavicco, L. , Villani, L. , and Oriolo, G. , 2010, Robotics—Modeling, Planning and Control, Springer, London.
Khalil, H. K. , 2001, Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, NJ.
Hagedorn, P. , and DasGupta, A. , 2007, Vibrations and Waves in Continuous Mechanical Systems, Wiley, Chichester, UK.
Preumont, A. , 2011, Vibration Control of Active Structures—An Introduction, 3rd ed., Springer, Berlin.
Bauchau, O. A. , and Craig, J. I. , 2009, Structural Analysis—With Applications to Aerospace Structures, Springer, New York, NY.
Hodges, D. H. , and Pierce, G. A. , 2002, Introduction to Structural Dynamics and Aeroelasticity, Cambridge University Press, Cambridge, UK.
Genta, G. , 2009, Vibration Dynamics and Control, Springer, New York.
Inman, D. J. , 2006, Vibration with Control, Wiley, Chichester, UK.
Slotine, J. E. , and Li, W. , 1991, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ.
Cheli, F. , and Diana, G. , 2015, Advanced Dynamics of Mechanical Systems, Springer, London.
Gawronski, W. K. , 2004, Advanced Structural Dynamics and Active Control of Structures, Springer, New York.
Skelton, R. E. , and de Oliveira, M. C. , 2009, Tensegrity Systems, Springer, New York.
Juang, J. N. , and Phan, M. Q. , 2004, Identification and Control of Mechanical Systems, Cambridge University Press, Cambridge, UK.
Seifried, R. , 2014, Dynamics of Underactuated Multibody Systems—Modeling, Control, and Optimal Design, Springer, London.
Zhong, W. X. , 2004, Duality System in Applied Mechanics and Optimal Control, Kluwer Academic Publishers, New York.
Inman, D. J. , 2008, Engineering Vibration, 3rd ed., Prentice Hall, Upper Saddle River, NJ.
Al Majid, A. , and Dufour, R. , 2002, “ Formulation of a Hysteretic Restoring Force Model—Application to Vibration Isolation,” J. Nonlinear Dyn., 27(1), pp. 69–85. [CrossRef]
Udwadia, F. E. , 2013, “ A New Approach to Stable Optimal Control of Complex Nonlinear Dynamical Systems,” ASME J. Appl. Mech., 81(3), p. 031001. [CrossRef]
Raibert, M. H. , and Craig, J. J. , 1981, “ Hybrid Position-Force Control of Manipulators,” ASME J. Dyn. Syst., Meas., Control, 103(2), pp. 126–133. [CrossRef]
Gorinevsky, D. , Formalsky, A. , and Schneider, A. , 1997, Force Control of Robotics Systems, CRC Press, Boca Raton, FL.
Spong, M. W. , Hutchinson, S. , and Vidyasagar, M. , 2005, Robot Modeling and Control, Wiley, New York. [PubMed] [PubMed]
Lewis, F. L. , Dawson, D. M. , and Abdallah, C. T. , 2003, Robot Manipulator Control—Theory and Practice, CRC Press, Boca Raton, FL.
Guida, D. , and Pappalardo, C. M. , 2015, “ Control Design of an Active Suspension System for a Quarter-Car Model With Hysteresis,” J. Vib. Eng. Technol., 3(3), pp. 277–299.
Pappalardo, C. M. , 2015, “ A Natural Absolute Coordinate Formulation for the Kinematic and Dynamic Analysis of Rigid Multibody Systems,” J. Nonlinear Dyn., 81(4), pp. 1841–1869. [CrossRef]
Pappalardo, C. M. , Patel, M. D. , Tinsley, B. , and Shabana, A. A. , 2015, “ Contact Force Control in Multibody Pantograph/Catenary Systems,” Proc. Inst. Mech. Eng., Part K, 230(4), pp. 307–328.
Pappalardo, C. M. , Yu, Z. , Zhang, X. , and Shabana, A. A. , 2015, “ Rational ANCF Thin Plate Finite Element,” ASME J. Comput. Nonlinear Dyn., 11(5), p. 051009. [CrossRef]
Ogata, K. , 2010, Modern Control Engineering, 5th ed., Prentice Hall, Boston.
Nise, N. S. , 2011, Control System Engineering, 6th ed., Wiley, New York.
Vincent, T. L. , and Grantham, J. W. , 1997, Nonlinear and Optimal Control Systems, Wiley, New York.
Troutman, J. L. , 1995, Variational Calculus and Optimal Control—Optimization With Elementary Convexity, 2nd ed., Springer, New York.
Betts, J. T. , 2010, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd ed., Siam, Philadelphia, PA.
Liberzon, D. , 2012, Calculus of Variations and Optimal Control Theory—A Concise Introduction, Princeton University Press, Princeton, NJ.
Clarke, F. , 2013, Functional Analysis, Calculus of Variation and Optimal Control, Springer, London.
Stengel, R. F. , 1986, Optimal Control and Estimation, Dover, New York.
Lewis, F. L. , Vrabie, D. L. , and Syrmos, V. L. , 2012, Optimal Control, 3rd ed., Wiley, New York.
Bement, M. T. , and Bewley, T. R. , 2008, “ Excitation Design for Damage Detection Using Iterative Adjoint-Based Optimization—Part 1: Method Development,” Mech. Syst. Signal Process., 23(3), pp. 783–793. [CrossRef]
Bement, M. T. , and Bewley, T. R. , 2008, “ Excitation Design for Damage Detection Using Iterative Adjoint-Based Optimization—Part 2: Experimental Demonstration,” Mech. Syst. Signal Process., 23(3), pp. 794–803. [CrossRef]
Kirk, D. E. , 1970, Optimal Control Theory—An Introduction, Dover, Mineola, NY.
Press, W. H. , Teukolsky, S. A. , Vetterling, W. T. , and Flannery, B. P. , 2007, Numerical Recipes—The Art of Scientific Computing, 3rd ed., Cambridge University Press, Cambridge, UK.
Snyman, J. A. , 2005, Practical Mathematical Optimization—An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms, Springer, New York.
Shabana, A. A. , 2013, Dynamics of Multibody Systems, 4th ed., Cambridge University Press, Cambridge, UK.
Meirovitch, L. , 2010, Methods of Analytical Dynamics, Dover, Mineola, NY.
Lanczos, C. , 1986, The Variational Principles of Mechanics, 4th ed., Dover, Mineola, NY.
Goldstein, H. , Poole, C. P. , and Safko, J. L. , 2013, Classical Mechanics, 3rd ed., Addison Wesley, San Francisco, CA.
Fantoni, I. , and Lozano, R. , 2001, Non-Linear Control for Underactuated Mechanical Systems, Springer, London.
Guida, D. , and Pappalardo, C. M. , 2014, “ Forward and Inverse Dynamics of Nonholonomic Mechanical Systems,” Meccanica, 49(7), pp. 1547–1559. [CrossRef]
Nocedal, J. , and Wright, S. , 2006, Numerical Optimization, 2nd ed., Springer, New York.
Pappalardo, C. M. , and Guida, D. , 2016, “ Control of Nonlinear Vibrations Using the Adjoint Method,” Meccanica (in press).
Kulkarni, S. , Pappalardo, C. M. , and Shabana, A. A. , 2016, “ Pantograph/Catenary Contact Formulations,” ASME J. Vib. Acoust., 139(1), p. 011010. [CrossRef]
Pappalardo, C. M. , Wallin, M. , and Shabana, A. A. , 2016, “ A New ANCF/CRBF Fully Parametrized Plate Finite Element,” ASME J. Comput. Nonlinear Dyn., 12(3), p. 031008. [CrossRef]
Pappalardo, C. M. , Wang, T. , and Shabana, A. A. , 2016, “ On the Formulation of the Planar ANCF Triangular Finite Elements,” J. Nonlinear Dyn. (submitted).
Pappalardo, C. M. , Wang, T. , and Shabana, A. A. , 2016, “ New ANCF Tetrahedral Finite Elements for the Nonlinear Dynamics of Flexible Structures,” J. Nonlinear Dyn. (submitted).
Guida, D. , and Pappalardo, C. M. , 2009, “ Sommerfeld and Mass Parameter Identification of Lubricated Journal Bearing,” WSEAS Trans. Appl. Theor. Mech., 4(4), pp. 205–214.
Guida, D. , Nilvetti, F. , and Pappalardo, C. M. , 2009, “ Parameter Identification of a Two Degrees of Freedom Mechanical System,” Int. J. Mech., 3(2), pp. 23–30.
Guida, D. , Nilvetti, F. , and Pappalardo, C. M. , 2009, “ Instability Induced by Dry Friction,” Int. J. Mech., 3(3), pp. 44–51.
Guida, D. , Nilvetti, F. , and Pappalardo, C. M. , 2009, “ Dry Friction Influence on Cart Pendulum Dynamics,” Int. J. Mech., 3(2), pp. 31–38.
Guida, D. , and Pappalardo, C. M. , 2013, “ A New Control Algorithm for Active Suspension Systems Featuring Hysteresis,” FME Trans., 41(4), pp. 285–290.

Figures

Grahic Jump Location
Fig. 1

Two degrees-of-freedom nonlinear mechanical system

Grahic Jump Location
Fig. 7

Uncontrolled and controlled velocity— x˙1

Grahic Jump Location
Fig. 8

Uncontrolled and controlled velocity— x˙2

Grahic Jump Location
Fig. 9

Uncontrolled and controlled force—F

Grahic Jump Location
Fig. 2

Control scheme for the feedforward controller

Grahic Jump Location
Fig. 3

Cost function convergence—Jr

Grahic Jump Location
Fig. 5

Uncontrolled and controlled displacement—x1

Grahic Jump Location
Fig. 6

Uncontrolled and controlled displacement—x2

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In