Research Papers

Boundary Control of Slender Beams Under Deterministic and Stochastic Loads

[+] Author and Article Information
K. D. Do

Department of Mechanical Engineering,
Curtin University,
Kent Street,
Bentley, WA 6102, Australia
e-mail: duc@curtin.edu.au

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received June 13, 2016; final manuscript received February 8, 2017; published online June 5, 2017. Assoc. Editor: Jongeun Choi.

J. Dyn. Sys., Meas., Control 139(9), 091012 (Jun 05, 2017) (14 pages) Paper No: DS-16-1311; doi: 10.1115/1.4036071 History: Received June 13, 2016; Revised February 08, 2017

This paper first derives equations of motion of extensible and shearable slender beams with large motions under both deterministic and stochastic external loads. Boundary feedback controllers are then proposed to achieve almost surely globally practically asymptotic stability. The control design, well-posedness, and stability analysis are based on a Lyapunov-type theorem developed for a class of stochastic evolution systems (SESs) in Hilbert space.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Fard, M. P. , and Sagatun, S. I. , 2001, “ Exponential Stabilization of a Transversely Vibrating Beam by Boundary Control Via Lyapunov's Direct Method,” ASME J. Dyn. Syst., Meas., Control, 123(2), pp. 195–200. [CrossRef]
Liu, K. , and Liu, Z. , 2000, “ Boundary Stabilization of a Nonhomogeneous Beam With Rotatory Inertia at the Tip,” J. Comput. Appl. Math., 114(1), pp. 1–10.
Queiroz, M. S. D. , Dawson, M. , Nagarkatti, S. , and Zhang, F. , 2000, Lyapunov-Based Control of Mechanical Systems, Birkhauser, Boston, MA.
Queiroz, M. D. , Dawson, D. M. , Agarwal, M. , and Zhang, F. , 1999, “ Adaptive Nonlinear Boundary Control of a Flexible Link Robotic Arm,” IEEE Trans. Rob. Autom., 15(4), pp. 779–787. [CrossRef]
Do, K. D. , and Pan, J. , 2008, “ Boundary Control of Transverse Motion of Marine Risers With Actuator Dynamics,” J. Sound Vib., 318(4–5), pp. 768–791. [CrossRef]
He, W. , Ge, S. S. , Voon, B. , How, E. , and Choo, Y. S. , 2014, Dynamics and Control of Mechanical Systems in Offshore Engineering, Springer, London.
Nguyen, T. L. , Do, K. D. , and Pan, J. , 2013, “ Boundary Control of Two-Dimensional Marine Risers With Bending Couplings,” J. Sound Vib., 332(16), pp. 3605–3622. [CrossRef]
Luo, Z. H. , Guo, B. Z. , and Morgul, O. , 1999, Stability and Stabilization of Infinite Dimensional Systems With Applications, Springer-Verlag, London.
Lu, L. , Chen, Z. , Yao, B. , and Wang, Q. , 2013, “ A Two-Loop Performance Oriented Tip Tracking Control of a Linear Motor Driven Flexible Beam System With Experiments,” IEEE Trans. Ind. Electron., 60(3), pp. 1011–1022. [CrossRef]
Krstic, M. , and Smyshlyaev, A. , 2008, “ Adaptive Control of PDEs,” Annu. Rev. Control, 32(2), pp. 149–160. [CrossRef]
Paranjape, A. , Chung, S.-J. , and Krstic, M. , 2013, “ PDE Boundary Control for Flexible Articulated Wings on a Robotic Aircraft,” IEEE Trans. Rob., 29(3), pp. 625–640. [CrossRef]
Weiss, G. , and Curtain, R. F. , 2008, “ Exponential Stabilization of a Rayleigh Beam Using Collocated Control,” IEEE Trans. Autom. Control, 53(3), pp. 643–654. [CrossRef]
Guo, B. Z. , and Jin, F. F. , 2013, “ The Active Disturbance Rejection and Sliding Mode Control Approach to the Stabilization of the Euler-Bernoulli Beam Equation With Boundary Input Disturbance,” Automatica, 49(9), pp. 2911–2918. [CrossRef]
Abd-Elwahab, M. , and Sherif, H. A. , 2006, “ Pre-Tensioned Layer Damping as a New Approach for Vibration Control of Elastic Beams,” ASME J. Vib. Acoust., 128(3), pp. 338–346. [CrossRef]
Tanaka, N. , and Kikushima, Y. , 1999, “ Optimal Vibration Feedback Control of an Euler-Bernoulli Beam: Toward Realization of the Active Sink Method,” ASME J. Vib. Acoust., 121(2), pp. 174–182. [CrossRef]
Omidi, E. , and Mahmoodi, S. N. , 2015, “ Multiple Mode Spatial Vibration Reduction in Flexible Beams Using h2 and h Modified Positive Position Feedback,” ASME J. Vib. Acoust., 137(1), p. 011016. [CrossRef]
Vatankhah, R. , Najafi, A. , Salarieh, H. , and Alasty, A. , 2015, “ Lyapunov-Based Boundary Control of Strain Gradient Microscale Beams With Exponential Decay Rate,” ASME J. Vib. Acoust., 137(3), p. 031003. [CrossRef]
Yang, J. S. , and Gao, R. P. , 2016, “ Active Control of a Very Large Floating Beam Structure,” ASME J. Vib. Acoust., 138(2), p. 021010. [CrossRef]
Eringen, A. C. , 1952, “ On the Nonlinear Vibration of Elastic Bars,” Q. Appl. Math., 9(4), pp. 361–369. [CrossRef]
Love, A. , 1920, A Treatise on the Mathematical Theory of Elasticity, 3rd ed., Cambridge University Press, Cambridge, UK.
Do, K. D. , and Pan, J. , 2009, “ Boundary Control of Three-Dimensional Inextensible Marine Risers,” J. Sound Vib., 327(3–5), pp. 299–321. [CrossRef]
Do, K. D. , 2011, “ Global Stabilization of Three-Dimensional Flexible Marine Risers by Boundary Control,” Ocean Syst. Eng., 1(2), pp. 171–194. [CrossRef]
Kokarakis, J. E. , and Bernitsas, M. M. , 1987, “ Nonlinear Three-Dimensional Dynamic Analysis of Marine Risers,” ASME J. Energy Resour. Technol., 109(3), pp. 105–111. [CrossRef]
Athisakul, C. , Monprapussorn, T. , and Chucheepsakul, S. , 2011, “ A Variational Formulation for Three-Dimensional Analysis of Extensible Marine Riser Transporting Fluid,” Ocean Eng., 38(4), pp. 609–620. [CrossRef]
Gawarecki, L. , and Mandrekar, V. , 2011, Stochastic Differential Equations in Infinite Dimensions With Applications to Stochastic Partial Differential Equations, Springer, Berlin.
Do, K. D. , 2016, “ Stability of Nonlinear Stochastic Distributed Parameter Systems and Its Applications,” ASME J. Dyn. Syst., Meas., Control, 138(10), p. 101010. [CrossRef]
Khalil, H. , 2002, Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ.
Krstic, M. , Kanellakopoulos, I. , and Kokotovic, P. , 1995, Nonlinear and Adaptive Control Design, Wiley, New York.
Banks, H. T. , Smith, R. C. , and Wang, Y. , 1996, Smart Material Structures, Wiley, Paris, France.
Evans, L. , 2000, Partial Differential Equations, American Mathematical Society, Providence, RI.
Berrimi, S. , and Messaoudi, S. A. , 2004, “ Exponential Decay of Solutions to a Viscoelastic Equation With Nonlinear Localized Damping,” Electron. J. Differ. Equations, 88, pp. 1–10.
Cavalcanti, M. M. , Cavalcanti, V. N. D. , and Soriano, J. A. , 2002, “ Exponential Decay for the Solution of Semilinear Viscoelastic Wave Equations With Localized Damping,” Electron. J. Differ. Equations, 44, pp. 1–14.
Do, K. D. , 2016, “ Boundary Control of Elastic Systems,” J. Appl. Math. Comput., 51(1), pp. 315–339. [CrossRef]
Lacarbonara, W. , 2013, Nonlinear Structural Mechanics, Springer, New York.
Orthwein, W. C. , 1968, “ A Nonlinear Stress-Strain Relation,” Int. J. Solids Struct., 4(3), pp. 371–382. [CrossRef]
Do, K. D. , and Pan, J. , 2009, Control of Ships and Underwater Vehicles, Springer, London.
Adams, R. A. , and Fournier, J. J. F. , 2003, Sobolev Spaces, 2nd ed., Academic Press, Oxford, UK.
Prevot, C. , and Rockner, M. , 2007, A Concise Course on Stochastic Partial Differential Equations, Springer, Berlin.
Prato, G. D. , and Zabczyk, J. , 1992, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK.
Deng, H. , Krstic, M. , and Williams, R. , 2001, “ Stabilization of Stochastic Nonlinear Systems Driven by Noise of Unknown Covariance,” IEEE Trans. Autom. Control, 46(8), pp. 1237–1253. [CrossRef]
Lions, J. , 1978, “ On Some Questions in Boundary Value Problems of Mathematical Physics,” Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Vol. 30, G. M. de La Penha and L. A. J. Medeiros , eds., Elsevier, North Holland, The Netherlands, pp. 284–346.
Liu, K. , 2006, Stability of Infinite Dimensional Stochastic Differential Equations With Applications, Chapman and Hall/CRC, Boca Raton, FL.
Bernitsas, M. M. , Kokarakis, J. E. , and Imron, A. , 1985, “ Large Deformation Three-Dimensional Static Analysis of Deep Water Marine Risers,” Appl. Ocean Res., 7(4), pp. 178–187. [CrossRef]
Niedzwecki, J. M. , and Liagre, P. Y. F. , 2003, “ System Identification of Distributed-Parameter Marine Riser Models,” Ocean Eng., 30(11), pp. 1387–1415. [CrossRef]
Sarpkaya, T. , and Isaacso, M. , 1981, Mechanics of Wave Forces on Offshore Structures, Van Nostrand Reinhold, New York.


Grahic Jump Location
Fig. 1

Beam boundary configuration (boundary control forces, ϕ1B and ϕ2B, and moment ϕ3B are provided by actuators at the top-end) and loading diagram: (a) boundary configuration and (b) loading diagram

Grahic Jump Location
Fig. 3

Simulation results with boundary controls

Grahic Jump Location
Fig. 2

Simulation results without any boundary controls




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In