0
Technical Brief

Observer-Based Guidance Law With Impact Angle Constraint

[+] Author and Article Information
Pingping Qu

The School of Electronics and Information Engineering,
Shenyang Aerospace University,
Shenyang 110136, China
e-mail: qupingping_79@163.com

Di Zhou

Department of Control Science and Engineering,
Harbin Institute of Technology,
Harbin 150001, China
e-mail: zhoud@hit.edu.cn

Sheng Sun

Department of Guidance and Control,
Beijing Aerospace Automatic Control Institute;
National Key Laboratory of Science and Technology on
Aerospace Intelligent Control,
Beijing 100854, China
e-mail: sunshenghit@163.com

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received June 1, 2016; final manuscript received March 22, 2017; published online July 10, 2017. Assoc. Editor: Yang Shi.

J. Dyn. Sys., Meas., Control 139(11), 114504 (Jul 10, 2017) (7 pages) Paper No: DS-16-1280; doi: 10.1115/1.4036664 History: Received June 01, 2016; Revised March 22, 2017

Accounting for the autopilot as second-order dynamics, an observer-based guidance law with terminal impact angle constraint is designed using the dynamic surface control method. Some first-order low-pass filters are introduced into the designing process to avoid the occurrence of high-order derivatives of the line of sight (LOS) angle in the expression of the guidance law such that the guidance law can be implemented in practical applications. The proposed guidance law is effective in compensating for the second-order autopilot lag. In simulation of intercepting targets with sinusoidal acceleration, the guidance law is compared with the biased proportional navigation guidance (BPNG) law in the presence of missile autopilot lag. Simulation results show that the proposed observer-based guidance law with terminal impact angle constraint is able to guide a missile with large autopilot lag to impact a target with a desired angle and achieve a small miss distance, even if the target escapes in a great and fast maneuver.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ratnoo, A. , and Ghose, D. , 2008, “ Impact Angle Constrained Interception of Stationary Targets,” J. Guid. Control Dyn., 31(6), pp. 1817–1822. [CrossRef]
Song, T. L. , and Shin, S. J. , 1999, “ Time-Optimal Impact Angle Control for Vertical Plane Engagements,” IEEE Trans. Aerosp. Electron. Syst., 35(2), pp. 738–742. [CrossRef]
Ryoo, C. K. , Cho, H. , and Tahk, M. J. , 2006, “ Time-to-Go Weighted Optimal Guidance With Impact Angle Constraints,” IEEE Trans. Control Syst. Technol., 14(3), pp. 483–492. [CrossRef]
Jeon, I. S. , Lee, J. I. , and Tahk, M. J. , 2006, “ Impact-Time-Control Guidance Law for Anti-Ship Missiles,” IEEE Trans. Control Syst. Technol., 14(2), pp. 260–266. [CrossRef]
Lee, J. I. , Jeon, I. S. , and Tahk, M. J. , 2007, “ Guidance Law to Control Impact Time and Angle,” IEEE Trans. Aerosp. Electron. Syst., 43(1), pp. 301–310. [CrossRef]
Manchester, I. R. , and Savkin, A. V. , 2004, “ Circular Navigation Missile Guidance With Incomplete Information and Uncertain Autopilot Model,” J. Guid. Control Dyn., 27(6), pp. 1078–1083. [CrossRef]
Manchester, I. R. , and Savkin, A. V. , 2006, “ Circular-Navigation-Guidance Law for Precision Missile/Target Engagements,” J. Guid. Control Dyn., 29(2), pp. 314–320. [CrossRef]
Kim, B. S. , Lee, J. G. , and Han, H. S. , 1998, “ Biased PNC Law for Impact With Angular Constraint,” IEEE Trans. Aerosp. Electron. Syst., 34(1), pp. 277–288. [CrossRef]
Idan, M. , Golan, O. M. , and Guelman, M. , 1995, “ Optimal Planar Interception With Terminal Constraint,” J. Guid. Control Dyn., 18(6), pp. 1273–1279. [CrossRef]
Song, T. L. , Shin, S. J. , and Cho, H. , 1999, “ Impact Angle Control for Planar Engagements,” IEEE Trans. Aerosp. Electron. Syst., 35(4), pp. 1439–1444. [CrossRef]
He, S. M. , Wang, W. , and Wang, J. , 2016, “ Three-Dimensional Impact Angle Guidance Laws Based on Model Predictive Control and Sliding Mode Disturbance Observer,” ASME J. Dyn. Syst. Meas. Control, 138(8), p. 081006. [CrossRef]
Yan, H. , and Ji, H. B. , 2012, “ Guidance Laws Based on Input-to-State Stability and High-Gain Observers,” IEEE Trans. Aerosp. Electron. Syst., 48(3), pp. 2518–2529. [CrossRef]
Rusnak, I. , and Meirt, L. , 1990, “ Modern Guidance Law for High-Order Autopilot,” J. Guid. Control Dyn., 14(5), pp. 1056–1058. [CrossRef]
Yoo, S. J. , Park, J. B. , and Choi, Y. H. , 2006, “ Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks,” IEEE Trans. Syst. Man Cybern. B Cybern., 36(6), pp. 1342–1355. [CrossRef] [PubMed]
Xiong, G. L. , Xie, Z. W. , Huang, J. B. , Liu, H. , Jiang, Z. N. , and Sun, K. , 2010, “ Dynamic Surface Control- Backstepping Based Impedance Control for 5-DOF Flexible Joint Robots,” J. Cent. South Univ. Technol., 17(4), pp. 807–815. [CrossRef]
Hou, M. Z. , and Duan, G. R. , 2011, “ Adaptive Dynamic Surface Control for Integrated Missile Guidance and Autopilot,” Int. J. Autom. Comput., 8(1), pp. 122–127. [CrossRef]
Swaroop, D. , Hedrick, J. K. , Yip, P. P. , and Gerdes, J. C. , 2000, “ Dynamic Surface Control for a Class of Nonlinear Systems,” IEEE Trans. Autom. Control, 45(10), pp. 1893–1899. [CrossRef]
Swaroop, D. , Gerdes, J. C. , Yip, P. P. , and Hedrick, J. K. , 1997, “ Dynamic Surface Control of Nonlinear Systems,” American Control Conference (ACC), Albuquerque, NM, June 4–6, pp. 3028–3034.
Xu, B. , Huang, X. Y. , Wang, D. W. , and Sun, F. , 2014, “ Dynamic Surface Control of Constrained Hypersonic Flight Models With Parameter Estimation and Actuator Compensation,” Asian J. Control, 16(1), pp. 162–174. [CrossRef]
Li, Y. M. , Tong, S. C. , and Li, T. S. , 2015, “ Adaptive Fuzzy Output Feedback Dynamic Surface Control of Interconnected Nonlinear Pure-Feedback Systems,” IEEE Trans. Cybern., 45(1), pp. 138–149. [CrossRef] [PubMed]
Zhou, D. , Qu, P. P. , and Sun, S. , 2013, “ A Guidance Law With Terminal Impact Angle Constraint Accounting for Missile Autopilot,” ASME J. Dyn. Syst. Meas. Control, 135(5), p. 051009. [CrossRef]
Chwa, D. Y. , Choi, J. Y. , and Anavatti, S. G. , 2006, “ Observer-Based Adaptive Guidance Law Considering Target Uncertainties and Control Loop Dynamics,” IEEE Trans. Control Syst. Technol., 14(1), pp. 112–123. [CrossRef]
Duan, G. R. , 2004, Linear System Theory, Harbin Institute of Technology Press, Harbin, China, pp. 292–297.

Figures

Grahic Jump Location
Fig. 1

Planar relative motion of missile and target

Grahic Jump Location
Fig. 3

Acceleration command

Grahic Jump Location
Fig. 6

Trajectories of missile and target

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In