Research Papers

Linear Matrix Inequality Based Fractional Integral Sliding-Mode Control of Uncertain Fractional-Order Nonlinear Systems

[+] Author and Article Information
Sara Dadras

Electrical and Computer Engineering Department,
Utah State University,
Logan, UT 84322
e-mail: s_dadras@ieee.org

Soodeh Dadras

Electrical and Computer Engineering Department,
Utah State University,
Logan, UT 84322

HamidReza Momeni

Automation and Instruments Lab,
Electrical Engineering Department,
Tarbiat Modares University,
P.O. Box 14115-143,
Tehran 14115, Iran

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received March 21, 2014; final manuscript received April 11, 2017; published online July 20, 2017. Editor: Joseph Beaman.

J. Dyn. Sys., Meas., Control 139(11), 111003 (Jul 20, 2017) (7 pages) Paper No: DS-14-1130; doi: 10.1115/1.4036807 History: Received March 21, 2014; Revised April 11, 2017

A design of linear matrix inequality (LMI)-based fractional-order surface for sliding-mode controller of a class of uncertain fractional-order nonlinear systems (FO-NSs) is proposed in this paper. A new switching law is achieved guaranteeing the reachability condition. This control law is established to obtain a sliding-mode controller (SMC) capable of deriving the state trajectories onto the fractional-order integral switching surface and maintain the sliding motion. Using LMIs, a sufficient condition for existence of the sliding surface is derived which ensures the tα asymptotical stability on the sliding surface. Through a numerical example, the superior performance of the new fractional-order sliding mode controller is illustrated in comparison with a previously proposed method.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Edwards, C. , and Spurgeon, S. K. , 1998, Sliding Mode Control Theory and Applications, Taylor & Francis, New York.
Oucheriah, S. , 1997, “ Robust Sliding Mode Control of Uncertain Dynamic Delay Systems in the Presence of Matched and Unmatched Uncertainties,” ASME J. Dyn. Syst. Meas. Control, 119(1), pp. 69–72. [CrossRef]
Xia, Y. , and Jia, Y. , 2003, “ Robust Sliding-Mode Control for Uncertain Time-Delay Systems: An LMI Approach,” IEEE Trans. Autom. Control, 48(6), pp. 1086–1092. [CrossRef]
Huang, R. , Lin, Y. , and Lin, Z. , 2012, “ Mode-Independent Stabilization of Markovian Jump Systems With Time-Varying Delays: A Sliding Mode Approach,” ASME J. Dyn. Syst. Meas. Control, 134(5), p. 051009. [CrossRef]
Gao, W. , Wang, Y. , and Homaifa, A. , 1995, “ Discrete-Time Variable Structure Control Systems,” IEEE Trans. Ind. Electron., 42(2), pp. 117–122. [CrossRef]
Podlubny, I. , 1999, Fractional Differential Equations, Academic Press, New York.
Sun, H. , Chen, W. , and Chen, Y. Q. , 2009, “ Variable-Order Fractional Differential Operators in Anomalous Diffusion Modeling,” Physica A, 388(21), pp. 4586–4592. [CrossRef]
Machado, J. A. T. , Costa, A. C. , and Quelhas, M. D. , 2011, “ Fractional Dynamics in DNA,” Commun. Nonlinear Sci. Numer. Simul., 16(8), pp. 2963–2969. [CrossRef]
Malek, H. , Dadras, S. , and Chen, Y. Q. , 2016, “ Fractional Order Equivalent Series Resistance Modelling of Electrolytic Capacitor and Fractional Order Failure Prediction With Application to Predictive Maintenance,” IET Power Electron., 9(8), pp. 1608–1613. [CrossRef]
Dadras, S. , 2017, “ Path Tracking Using Fractional Order Extremum Seeking Controller for Autonomous Ground Vehicle,” SAE Paper No. 2017-01-0094.
Flores-Tlacuahuac, A. , and Biegler, L. T. , 2014, “ Optimization of Fractional Order Dynamic Chemical Processing Systems,” Ind. Eng. Chem. Res., 53(13), pp. 5110–5127. [CrossRef]
Tang, Y. , Zhang, X. , Zhang, D. , Zhao, G. , and Guan, X. , 2013, “ Fractional Order Sliding Mode Controller Design for Antilock Braking Systems,” Neurocomputing, 111, pp. 122–130. [CrossRef]
Malek, H. , Dadras, S. , and Chen, Y. Q. , 2014, “ Application of Fractional Order Current Controller in Three Phase Grid-Connected PV Systems,” American Control Conference (ACC), Portland, OR, June 4–6, pp. 5224–5229.
Podlubny, I. , 1999, “ Fractional-Order Systems and PIλDμ Controller,” IEEE Trans. Autom. Control, 44(1), pp. 208–214. [CrossRef]
Dadras, S. , and Momeni, H. R. , 2014, “ Fractional-Order Dynamic Output Feedback Sliding Mode Control Design for Robust Stabilization of Uncertain Fractional-Order Nonlinear Systems,” Asian J. Control, 16(2), pp. 489–497. [CrossRef]
Malek, H. , Dadras, S. , and Chen, Y. Q. , 2016, “ Performance Analysis of Fractional Order Extremum Seeking Control,” ISA Trans., 63, pp. 281–287. [CrossRef] [PubMed]
Yin, C. , Chen, Y. , and Zhong, S. M. , 2014, “ Fractional-Order Sliding Mode Based Extremum Seeking Control of a Class of Nonlinear Systems,” Automatica, 50(12), pp. 3173–3181. [CrossRef]
Dadras, S. , and Momeni, H. R. , 2010, “ Control of a Fractional-Order Economical System Via Sliding Mode,” Physica A, 389(12), pp. 2434–2442. [CrossRef]
Yin, C. , Cheng, Y. , Chen, Y. , Stark, B. , and Zhong, S. , 2015, “ Adaptive Fractional-Order Switching-Type Control Method Design for 3D Fractional-Order Nonlinear Systems,” Nonlinear Dyn., 82(1–2), pp. 39–52. [CrossRef]
Hosseinnia, S. H. , Ghaderi, R. , Ranjbar, A. , Mahmoudian, M. , and Momani, S. , 2010, “ Sliding Mode Synchronization of an Uncertain Fractional Order Chaotic System,” Comput. Math. Appl., 59(5), pp. 1637–1643. [CrossRef]
Tavazoei, M. S. , and Haeri, M. , 2008, “ Synchronization of Chaotic Fractional-Order Systems Via Active Sliding Mode Controller,” Physica A, 387(1), pp. 57–70. [CrossRef]
Choi, H. H. , 1997, “ A New Method for Variable Structure Control System Design: A Linear Matrix Inequality Approach,” Automatica, 33(11), pp. 2089–2092. [CrossRef]
Dasilva, J. M. A. , Edwards, C. , and Spurgeon, S. K. , 2009, “ Sliding-Mode Output-Feedback Control Based on LMIs for Plants With Mismatched Uncertainties,” IEEE Trans. Ind. Electron., 56(9), pp. 3675–3683. [CrossRef]
Dadras, S. , and Momeni, H. R. , 2013, “ Passivity-Based Fractional-Order Integral Sliding Mode Control Design for Uncertain Fractional-Order Nonlinear Systems,” Mechatronics, 23(7), pp. 880–887. [CrossRef]
Mobayen, S. , Johari Majd, V. , and Sojoodi, M. , 2012, “ An LMI-Based Composite Nonlinear Feedback Terminal Sliding-Mode Controller Design or Disturbed MIMO Systems,” Math. Comput. Simul., 85, pp. 1–10. [CrossRef]
Lan, Y.-H. , and He, L.-J. , 2012, “ Sliding Mode and LMI Based Control for Fractional Order Unified Chaotic Systems,” 31st Chinese Control Conference (CCC), Hefei, China, July 25–27, pp. 3192–3196. http://ieeexplore.ieee.org/document/6390471/
Yin, C. , Chen, Y. Q. , and Zhong, S. M. , 2013, “ LMI Based Design of a Sliding Mode Controller for a Class of Uncertain Fractional-Order Nonlinear Systems,” American Control Conference (ACC), Washington, DC, June 17–19, pp. 6511–6516.
Efe, M. O. , 2008, “ Fractional Fuzzy Adaptive Sliding Mode Control of a 2-DOF Direct-Drive Robot Arm,” IEEE Trans. Syst. Man Cybern., 38(6), pp. 1561–1570. [CrossRef]
Moze, M. , Sabatier, J. , and Oustaloup, A. , 2007, “ LMI Characterization of Fractional System Stability,” Advances in Fractional Calculus, J. Sabatier , O. P. Agrawal , and J. A. T. Machado , eds., Springer, Dordrecht, The Netherlands, pp. 419–437. [CrossRef]
Sabatier, J. , Moze, M. , and Farges, C. , 2010, “ LMI Stability Conditions for Fractional Order Systems,” Comput. Math. Appl., 59(5), pp. 1594–1609. [CrossRef]
Li, Y. , Chen, Y. Q. , and Podlubny, I. , 2009, “ Mittag-Leffler Stability of Fractional-Order Nonlinear Dynamic Systems,” Automatica, 45(8), pp. 1965–1969. [CrossRef]
Dadras, S. , Dadras, S. , Malek, H. , and Chen, Y. Q. , 2017, “ A Note on the Lyapunov Stability of Fractional Order Nonlinear Systems,” ASME Paper No. IDETC2017-68270.
Boyd, S. , Ghaoui, L. E. , Feron, E. , and Balakrishnan, V. , 1994, Linear Matrix Inequality in System and Control Theory, SIAM, Philadelphia, PA. [CrossRef]
Ding, Y. , and Ye, H. , 2009, “ A Fractional-Order Differential Equation Model of HIV Infection of CD4+ T-Cells,” Math. Comput. Model., 50(3–4), pp. 386–392. [CrossRef]
Cipin, R. , Ondrusek, C. , and Huzlík, R. , 2014, “ Fractional-Order Model of DC Motor,” Mechatronics, 2013, pp. 363–370.
Petras, I. , 2010, “ Fractional-Order Memristor-Based Chua's Circuit,” IEEE Trans. Circuits Syst. II, 57(12), pp. 975–979. [CrossRef]
Sabatier, J. , Cugnet, M. , Laruelle, S. , Grugeon, S. , Sahut, B. , Oustaloup, A. , and Tarascon, M. , 2010, “ A Fractional Order Model for Lead-Acid Battery Crankability Estimation,” Commun. Nonlinear. Sci. Numer. Simul., 15(5), pp. 1308–1317. [CrossRef]
Mitkowski, W. , and Skruch, P. , 2013, “ Fractional-Order Models of the Supercapacitors in the Form of RC Ladder Networks,” Bull. Pol. Acad. Sci.: Tech. Sci., 61(3), pp. 581–587.
Lofberg, J. , 2004, “ YALMIP: A Toolbox for Modelling and Optimization in MATLAB,” International Symposium on Computer Aided Control Systems Design (CACSD), New Orleans, LA, Sept. 2–4, pp. 284–289.
Valério, D. , 2005, “ Ninteger v.2.3 Fractional Control Toolbox for MATLAB,” Instituto Superior Técnico, Lisbon, Portugal, accessed July 11, 2017, http://web.ist.utl.pt/Duarte.Valerio/Ninteger/Ninteger.htm
Yin, C. , Dadras, S. , and Zhong, S. M. , 2012, “ Design an Adaptive Sliding Mode Controller for Drive-Response Synchronization of Two Different Uncertain Fractional-Order Chaotic Systems With Fully Unknown Parameters,” J. Franklin Inst., 349(10), pp. 3078–3101. [CrossRef]
Bohannan, G. W. , 2008, “ Analog Fractional Order Controller in Temperature and Motor Control Applications,” J. Vib. Control, 14(9–10), pp. 1487–1498. [CrossRef]
Valerio, D. , and Sa da Costa, J. , 2005, “ Time-Domain Implementation of Fractional Order Controllers,” IEEE Proc. Control Theory Appl., 152(5), pp. 539–552. [CrossRef]
Oustaloup, A. , Levron, F. , Mathieu, B. , and Nanot, F. M. , 2000, “ Frequency-Band Complex Noninteger Differentiator, Characterization and Synthesis,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 47(1), pp. 25–39. [CrossRef]


Grahic Jump Location
Fig. 1

State trajectories

Grahic Jump Location
Fig. 2

Sliding surface variables s1, s2, and s3

Grahic Jump Location
Fig. 3

Control input variables u1, u2, and u3

Grahic Jump Location
Fig. 4

Comparison of the evolution of the state trajectories

Grahic Jump Location
Fig. 5

Comparison of the evolution of sliding surface



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In