Skogestad,
S.
, and
Postlethwaite,
I.
, 2005, Multivariable Feedback Control: Analysis and Design,
Wiley,
New York.

Ogunnaike,
B. A.
, and
Harmon,
R.
, 1994, Process Dynamics, Modelling and Control,
Oxford University Press,
New York.

Wang,
Q. G.
, 2003, Decoupling Control (Lecture Notes in Control and Information Sciences),
Springer Verlag,
Berlin.

Luyben,
W. L.
, 1970, “
Distillation Decoupling,” AIChE J.,
16(2), pp. 198–203.

[CrossRef]
Seborg,
D. E.
,
Mellichamp,
D. A.
,
Edgar,
T. F.
, and
Doyle,
F. J.
, 2010, Process Dynamics, Modelling and Control,
Wiley,
New York.

Shinskey,
F. G.
, 1988, Process Control Systems: Application, Design, and Adjustment,
McGraw-Hill,
New York.

Gagnon,
E.
,
Pomerleau,
A.
, and
Desbiens,
A.
, 1998, “
Simplified, Ideal or Inverted Decoupling?,” ISA Trans.,
37(4), pp. 265–276.

[CrossRef]
Garrido,
J.
,
Vázquez,
F.
, and
Morilla,
F.
, 2012, “
Centralized Multivariable Control by Simplified Decoupling,” J. Process Control,
22(6), pp. 1044–1062.

[CrossRef]
Jevtović,
B. T.
, and
Mataušek,
M. R.
, 2010, “
PID Controller Design of TITO System Based on Ideal Decoupler,” J. Process Control,
20(7), pp. 869–876.

[CrossRef]
Osinuga,
M.
,
Patra,
S.
, and
Lanzon,
A.
, 2012, “
State-Space Solution to Weight Optimization Problem in

*H*_{∞} Loop-Shaping Control,” Automatica,
48(3), pp. 505–513.

[CrossRef]
Ramirez,
D. R.
,
Arahal,
M. R.
, and
Camacho,
E. F.
, 2004, “
Min-Max Predictive Control of a Heat Exchanger Using a Neural Network Solver,” IEEE Trans. Control Syst. Technol.,
12(5), pp. 776–786.

[CrossRef]
Zafiriou,
E.
, 1990, “
Robust Model Predictive Control of Processes With Hard Constraints,” Comput. Chem. Eng.,
14(45), pp. 359–371.

[CrossRef]
Zheng,
Z. Q.
, and
Morari,
M.
, 1993, “
Robust Stability of Constrained Model Predictive Control,” American Control Conference (ACC), San Francisco, CA, June 2–4, pp. 379–383.

Lee,
J. H.
, and
Cooley,
B. L.
, 2000, “
Minmax Predictive Control Techniques for a Linear State-Space System With a Bounded Set of Input Matrices,” Automatica,
36(3), pp. 463–473.

[CrossRef]
Gao,
Y.
, and
Chong,
K. T.
, 2012, “
The Explicit Constrained Min-Max Model Predictive Control of a Discrete-Time Linear System With Uncertain Disturbances,” IEEE Trans. Autom. Control,
57(9), pp. 2373–2378.

[CrossRef]
Gruber,
J.
,
Ramirez,
D.
,
Alamo,
T.
, and
Camacho,
E.
, 2011, “
Minmax MPC Based on an Upper Bound of the Worst Case Cost With Guaranteed Stability: Application to a Pilot Plant,” J. Process Control,
21(1), pp. 194–204.

[CrossRef]
Casavola,
A.
,
Famularo,
D.
, and
Franzé,
G.
, 2004, “
Robust Constrained Predictive Control of Uncertain Norm-Bounded Linear Systems,” Automatica,
40(11), pp. 1865–1876.

[CrossRef]
Tahir,
F.
, and
Jaimoukha,
I. M.
, 2013, “
Robust Feedback Model Predictive Control of Constrained Uncertain Systems,” J. Process Control,
23(2), pp. 189–200.

[CrossRef]
Mahmoodabadi,
M.
, and
Nemati,
A.
, 2016, “
A Novel Adaptive Genetic Algorithm for Global Optimization of Mathematical Test Functions and Real-World Problems,” Eng. Sci. Technol. Int. J.,
19(4), pp. 2002–2021.

[CrossRef]
Zhong,
W.
, and
Palazzolo,
A.
, 2015, “
Magnetic Bearing Rotordynamic System Optimization Using Multi-Objective Genetic Algorithms,” ASME J. Dyn. Syst., Meas., Control,
137(2), p. 021012.

[CrossRef]
Darabi,
A.
,
Alfi,
A.
,
Kiumarsi,
B.
, and
Modares,
H.
, 2011, “
Employing Adaptive Particle Swarm Optimization Algorithm for Parameter Estimation of an Exciter Machine,” ASME J. Dyn. Syst., Meas., Control,
134(1), p. 011013.

[CrossRef]
Kiran,
M.
,
Gündüz,
M.
, and
Baykan,
O.
, 2012, “
A Novel Hybrid Algorithm Based on Particle Swarm and Ant Colony Optimization for Finding the Global Minimum,” Appl. Math. Comput.,
219(4), pp. 1515–1521.

Ben Aicha,
F.
,
Bouani,
F.
, and
Ksouri,
M.
, 2013, “
A Multivariable Multiobjective Predictive Controller,” Comput. Math. Appl.,
23(1), pp. 5–45.

Cuenca,
A.
, and
Salt,
J.
, 2012, “
RST Controller Design for a Non-Uniform Multi-Rate Control System,” J. Process Control,
22(10), pp. 1865–1877.

[CrossRef]
Jin,
L.
, and
Kim,
Y. C.
, 2008, “
Fixed, Low-Order Controller Design With Time Response Specifications Using Non-Convex Optimization,” ISA Trans.,
47(4), pp. 429–438.

[CrossRef] [PubMed]
Ben Hariz,
M.
,
Bouani,
F.
, and
Ksouri,
M.
, 2012, “
Robust Controller for Uncertain Parameters Systems,” ISA Trans.,
51(5), pp. 632–640.

[CrossRef] [PubMed]
Ben Hariz,
M.
,
Bouani,
F.
, and
Ksouri,
M.
, 2014, “
Implementation of a Fixed Low Order Controller on STM32 Microcontroller,” International Conference on Control, Engineering and Information Technology (CEIT), Sousse, Tunisia, Mar. 22–25, pp. 244–252.

Ben Hariz,
M.
,
Bouani,
F.
, and
Ksouri,
M.
, 2015, “
Design of a Controller With Time Response Specifications on STM32 Microcontroller,” Handbook of Research on Advances in Computational Intelligence and Robotics (Advances in Computational Intelligence and Robotics, Vol.
1),
A. T. Azar
and
S. Vaidyanathan
, eds.,
IGI Global, Hershey, PA, pp. 624–650.

[CrossRef]
Ben Hariz,
M.
, and
Bouani,
F.
, 2016, “
Synthesis and Implementation of a Robust Fixed Low-Order Controller for Uncertain Systems,” Arabian J. Sci. Eng.,
41(9), pp. 3645–3654.

[CrossRef]
Ben Hariz,
M.
,
Chagra,
W.
, and
Bouani,
F.
, 2013, “
Controllers Design for MIMO Systems With Time Response Specifications,” International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunisia, May 6–8, pp. 573–578.

Ben Hariz,
M.
,
Chagra,
W.
, and
Bouani,
F.
, 2014, “
Synthesis of Controllers for MIMO Systems With Time Response Specifications,” Int. J. Syst. Dyn. Appl.,
3(3), pp. 25–52.

Ben Hariz,
M.
, and
Bouani,
F.
, 2015, “
Design of Controllers for Decoupled TITO Systems Using Different Decoupling Techniques,” 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, Aug. 24–27, pp. 1116–1121.

Kim,
Y.
,
Kim,
K.
, and
Manabe,
S.
, 2004, “
Sensitivity of Time Response to Characteristic Ratios,” American Control Conference (ACC), Boston, MA, June 30–July 2, pp. 2723–2728.

Kim,
Y. C.
,
Keel,
L. H.
, and
Bhattacharyya,
S. P.
, 2003, “
Transient Response Control Via Characteristic Ratio Assignment,” IEEE Trans. Autom. Control,
48(12), pp. 2238–2244.

[CrossRef]
Jha,
N. K.
, 1995, “
Geometric Programming Based Robot Control Design,” Comput. Ind. Eng.,
29(14), pp. 631–635.

[CrossRef]
Choi,
J. C.
, and
Bricker,
D. L.
, 1996, “
Effectiveness of a Geometric Programming Algorithm for Optimization of Machining Economics Models,” Comput. Oper. Res.,
23(10), pp. 957–961.

[CrossRef]
Maranas,
C. D.
, and
Floudas,
C. A.
, 1997, “
Global Optimization in Generalized Geometric Programming,” Comput. Chem. Eng.,
21(4), pp. 351–369.

[CrossRef]
Porn,
R.
,
Bjork,
K.
, and
Westerlund,
T.
, 2008, “
Global Solution of Optimization Problems With Signomial Parts,” Discrete Optim.,
5(1), pp. 108–120.

[CrossRef]
Tsai,
J.
, 2009, “
Treating Free Variables in Generalized Geometric Programming Problems,” Comput. Chem. Eng.,
33(1), pp. 239–243.

[CrossRef]
Tsai,
J.
,
Lin,
M.
, and
Hu,
Y.
, 2007, “
On Generalized Geometric Programming Problems With Non-Positive Variables,” Eur. J. Oper. Res.,
178(1), pp. 10–19.

[CrossRef]
Bjork,
K.
,
Lindberg,
P. O.
, and
Westerlund,
T.
, 2003, “
Some Convexifications in Global Optimization of Problems Containing Signomial Terms,” Comput. Chem. Eng.,
27(5), pp. 669–679.

[CrossRef]
Liberti,
L.
, and
Maculan,
N.
, 2006, Global Optimization From Theory to Implementation,
Springer,
Berlin.

Druskin,
V.
, and
Simoncini,
V.
, 2011, “
Adaptive Rational Krylov Subspaces for Large-Scale Dynamical Systems,” Syst. Control Lett.,
60(8), pp. 546–560.

[CrossRef]
Lee,
H.
,
Chu,
C.
, and
Feng,
W.
, 2006, “
An Adaptive-Order Rational Arnoldi Method Formodel-Order Reductions of Linear Time-Invariant Systems,” Linear Algebra Appl.,
415(23), pp. 235–261.

[CrossRef]
Lequesne,
D.
, 2006, Régulation PID Analogique-Numérique-Floue,
Hermes Sciences Publications,
Lavoisier, Paris, France.