Technical Brief

A Sliding Mode Observer-Based Icing Detection and Estimation Scheme for Wind Turbines

[+] Author and Article Information
Maria Letizia Corradini

Scuola di Scienze e Tecnologie,
Università di Camerino,
Camerino (MC) 62032, Italy
e-mail: letizia.corradini@unicam.it

Gianluca Ippoliti

Dipartimento di Ingegneria dell'Informazione,
Università Politecnica delle Marche,
Ancona 60131, Italy
e-mail: gianluca.ippoliti@univpm.it

Giuseppe Orlando

Dipartimento di Ingegneria dell'Informazione,
Università Politecnica delle Marche,
Ancona 60131, Italy
e-mail: giuseppe.orlando@univpm.it

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received October 27, 2016; final manuscript received July 20, 2017; published online September 8, 2017. Assoc. Editor: Ryozo Nagamune.

J. Dyn. Sys., Meas., Control 140(1), 014502 (Sep 08, 2017) (5 pages) Paper No: DS-16-1518; doi: 10.1115/1.4037387 History: Received October 27, 2016; Revised July 20, 2017

In this paper, the problem of icing detection is considered for wind turbines (WTs) operating in medium speed wind region (region 2) and subject to a control law tracking the maximum delivery point of the power coefficient characteristic. Based on a robust observer of the rotor angular acceleration, rotor inertia is estimated in order to detect its eventual increase due to icing. Moreover, the observed value of rotor inertia can be potentially used for updating the controller parameters or to stop the turbine when icing is too severe. The proposed approach has been tested by intensive MatLab® simulations using the National Renewable Energy Laboratory 5 MW WT model.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Lehtomki, V. , Rissanen, S. , Wadham-Gagnon, M. , Sandel, K. , Moser, W. , and Jacob, D. , 2016, “ Fatigue Loads of Iced Turbines: Two Case Studies,” J. Wind Eng. Ind. Aerodyn., 158, pp. 37–50. [CrossRef]
Parent, O. , and Ilinca, A. , 2011, “ Anti-Icing and De-Icing Techniques for Wind Turbines—A Critical Review,” Cold Reg. Sci. Technol., 65(1), pp. 88–96. [CrossRef]
Fortin, G. , Perron, J. , and Ilinca, A. , 2005, “ A Study of Icing Events at Murdochville: Conclusions for the Wind Power Industry,” International Symposium, Wind Energy in Remote Regions, Magdalene Islands, QC, Canada, Oct. 19–21, pp. 1–9.
Pryor, S. C. , and Barthelmie, R. J. , 2010, “ Climate Change Impacts on Wind Energy: A Review,” Renewable Sustainable Energy Rev., 14(1), pp. 430–437. [CrossRef]
Saleh, S. , Ahshan, R. , and Moloney, C. , 2012, “ Wavelet-Based Signal Processing Method for Detecting Ice Accretion on Wind Turbines,” IEEE Trans. Sustainable Energy, 3(3), pp. 585–597. [CrossRef]
Pedersen, M. C. , and Yin, C. , 2014, “ Preliminary Modelling Study of Ice Accretion on Wind Turbines,” Energy Procedia, 61, pp. 258–261. [CrossRef]
Skrimpas, G. A. , Sweeney, C. W. , Marhadi, K. S. , Jensen, B. B. , Mijatovic, N. , and Holbll, J. , 2015, “ Employment of Kernel Methods on Wind Turbine Power Performance Assessment,” IEEE Trans. Sustainable Energy, 6(3), pp. 698–706. [CrossRef]
Stewart, G. , and Lackner, M. , 2013, “ Offshore Wind Turbine Load Reduction Employing Optimal Passive Tuned Mass Damping Systems,” IEEE Trans. Control Syst. Technol., 21(4), pp. 1090–1104. [CrossRef]
Sabatier, J. , Lanusse, P. , Feytout, B. , and Gracia, S. , 2016, “ CRONE Control Based Anti-Icing/Deicing System for Wind Turbine Blades,” Control Eng. Pract., 56, pp. 200–209. [CrossRef]
Shajiee, S. , Pao, L. Y. , and McLeod, R. R. , 2014, “ Optimizing the Layout of Heaters for Distributed Active De-Icing of Wind Turbine Blades,” Wind Eng., 38(6), pp. 587–600. [CrossRef]
Shajiee, S. , 2015, “ Direct Optical Ice Sensing and Closed-Loop Controller Design for Active De-Icing of Wind Turbines Using Distributed Heating,” Ph.D. thesis, University of Colorado at Boulder, Boulder, CO.
Shajiee, S. , Pao, L. Y. , and McLeod, R. R. , 2014, Monitoring Ice Accumulation and Active De-Icing Control of Wind Turbine Blades, Springer International Publishing, Cham, Switzerland, pp. 193–230.
Dalili, N. , Edrisy, A. , and Carriveau, R. , 2009, “ A Review of Surface Engineering Issues Critical to Wind Turbine Performance,” Renewable Sustainable Energy Rev., 13(2), pp. 428–438. [CrossRef]
Homola, M. , Nicklasson, P. , and Sundsbo, P. , 2006, “ Ice Sensors for Wind Turbines,” Cold Reg. Sci. Technol., 46(2), pp. 125–131. [CrossRef]
Wang, Z. , 2017, “ Recent Progress on Ultrasonic De-Icing Technique Used for Wind Power Generation, High-Voltage Transmission Line and Aircraft,” Energy Build., 140, pp. 42–49. [CrossRef]
Fakorede, O. , Feger, Z. , Ibrahim, H. , Ilinca, A. , Perron, J. , and Masson, C. , 2016, “ Ice Protection Systems for Wind Turbines in Cold Climate: Characteristics, Comparisons and Analysis,” Renewable Sustainable Energy Rev., 65, pp. 662–675. [CrossRef]
Farzaneh, M. , Volat, C. , and Leblond, A. , 2008, Anti-Icing and De-Icing Techniques for Overhead Lines, Springer, Dordrecht, The Netherlands, pp. 229–268.
Battisti, L. , 2015, Wind Turbines in Cold Climates: Icing Impacts and Mitigation Systems, Springer, Cham, Switzerland.
ISO, 2001, “ Atmospheric Icing of Structures: First Edition,” International Organization for Standardization, Geneva, Switzerland, Standard No. 12494-2001.
Makkonen, L. , 2000, “ Models for the Growth of Rime, Glaze, Icicles and Wet Snow on Structures,” Philos. Trans. R. Soc. London A, 358(1776), pp. 2913–2939. [CrossRef]
Frohboese, P. , and Anders, A. , 2007, “ Effects of Icing on Wind Turbine Fatigue Loads,” J. Phys.: Conf. Ser., 75, p. 012061. [CrossRef]
Myers, T. G. , 2001, “ Extension to the Messinger Model for Aircraft Icing,”AIAA J., 39(2), pp. 211–218. [CrossRef]
Zaragoza, J. , Pou, J. , Arias, A. , Spiteri, C. , Robles, E. , and Ceballos, S. , 2011, “ Study and Experimental Verification of Control Tuning Strategies in a Variable Speed Wind Energy Conversion System,” Renewable Energy, 36(5), pp. 1421–1430. [CrossRef]
Bianchi, F. D. , Battista, H. N. D. , and Mantz, R. J. , 2007, Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design, Springer-Verlag, Berlin.
Corradini, M. L. , and Ippoliti, G. , and Orlando, G. , 2013, “ Robust Control of Variable-Speed Wind Turbines Based on an Aerodynamic Torque Observer,” IEEE Trans. Control Syst. Technol., 21(4), pp. 1199–1206. [CrossRef]
Utkin, V. , 1992, Sliding Modes in Control and Optimization, Springer-Verlag, Berlin. [CrossRef]
Jonkman, J. , 2015, “ NWTC Design Codes—FAST,” National Renewable Energy Laboratory, Golden, CO, accessed July 31, 2017, http://wind.nrel.gov/designcodes/simulators/fast/
Buhl, M. L. , and Manjock, A. , 2006, “ A Comparison of Wind Turbine Aeroelastic Codes Used for Certification,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/CP-500-39113.
Jonkman, J. , Butterfield, S. , Musial, W. , and Scott, G. , 2009, “ Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-38060.


Grahic Jump Location
Fig. 1

(a) Wind inflow and (b) aerodynamic torque

Grahic Jump Location
Fig. 2

(a) Actual inertia (smooth line) compared with the estimated inertia and (b) rotor angular speed

Grahic Jump Location
Fig. 3

(a) Sliding variable sopt(t), (b) sliding variable σ(t), (c) tip speed ratio, and (d) electrical torque



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In