0
Research Papers

Robust Flat Filtering Control of a Nonlinear Manipulator-Direct Current Motor System

[+] Author and Article Information
H. Sira-Ramírez

Sección de Mecatrónica,
CINVESTAV IPN,
Av. IPN 2508, Col. San Pedro,
Zacatenco, Gustavo A. Madero,
Ciudad de México 07360, México
e-mail: hsira@cinvestav.mx

E. W. Zurita-Bustamante

Sección de Mecatrónica,
CINVESTAV IPN,
Av. IPN 2508, Col. San Pedro,
Zacatenco, Gustavo A. Madero,
Ciudad de México 07360, México
e-mail: ezurita@cinvestav.mx

A. Luviano-Juárez

Sección de Estudios de Posgrado e Investigación,
UPIITA-IPN,
Av. IPN 2580 Col. Barrio,
La laguna Ticomán, Gustavo A. Madero,
Ciudad de México 07340, México
e-mail: aluviano@ipn.mx

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received March 28, 2017; final manuscript received July 18, 2017; published online October 3, 2017. Assoc. Editor: Dumitru I. Caruntu.

J. Dyn. Sys., Meas., Control 140(2), 021009 (Oct 03, 2017) (8 pages) Paper No: DS-17-1178; doi: 10.1115/1.4037386 History: Received March 28, 2017; Revised July 18, 2017

This paper presents a linear robust output reference trajectory tracking controller, addressed here as a flat filtering controller (FFC), for nonlinear differentially flat systems. Here, we illustrate the controller's performance, via digital computer simulations and, also, via laboratory experiments, carried out on a single link-direct current (DC) motor driven robot manipulator undergoing a reference trajectory tracking task. The proposed linear FFC only requires the output to be regulated of the composite system and none of the internal states of the resulting third-order nonlinear system. The controller is designed on the basis of a drastic simplification of the combined single link-DC motor dynamics to a, perturbed, third-order pure integration system. This demonstrates the robustness of the proposed scheme with respect to ignored nonlinear state-dependent, endogenous, disturbances and, also, to independent unstructured exogenous disturbances inevitable in an experimental setup. Simulation and experimental results, as well as comparisons with other controllers, are presented.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fliess, M. , Marquez, R. , Delaleau, E. , and Sira-Ramírez, H. , 2002, “ Correcteurs Proportionnels-Intégraux Généralisés,” ESAIM: Control, Optim. Calculus Var., 7, pp. 23–41. [CrossRef]
Becedas, J. , Payo, I. , and Feliu, V. , 2011, “ Two-Flexible-Fingers Gripper Force Feedback Control System for Its Application as End Effector on a 6-DOF Manipulator,” IEEE Trans. Rob., 27(3), pp. 599–615. [CrossRef]
Sira-Ramírez, H. , Luviano-Juárez, A. , Ramírez-Neria, M. , and Garrido-Moctezuma, R. , 2016, “ Flat Filtering: A Classical Approach to Robust Control of Nonlinear Systems,” American Control Conference (ACC), Boston, MA, July 6–8, pp. 3844–3849.
Zurita-Bustamante, E. , Linares-Flores, J. , Guzmán-Ramírez, E. , and Sira-Ramírez, H. , 2011, “ A Comparison Between the GPI and PID Controllers for the Stabilization of a DC–DC Buck Converter: A Field Programmable Gate Array Implementation,” IEEE Trans. Ind. Electron., 58(11), pp. 5251–5262. [CrossRef]
Belmonte, L. , Morales, R. , Fernández-Caballero, A. , and Somolinos, J. , 2016, “ A Tandem Active Disturbance Rejection Control for a Laboratory Helicopter With Variable-Speed Rotors,” IEEE Trans. Ind. Electron., 63(10), pp. 6395–6406. [CrossRef]
Gao, Z. , 2006, “ Active Disturbance Rejection Control: A Paradigm Shift in Feedback Control System Design,” American Control Conference (ACC), Minneapolis, MN, June 14–16, pp. 2399–2405.
Gao, Z. , 2014, “ On the Centrality of Disturbance Rejection in Automatic Control,” ISA Trans., 53(4), pp. 850–857. [CrossRef] [PubMed]
Han, J. , 2009, “ From PID to Active Disturbance Rejection Control,” IEEE Trans. Ind. Electron., 56(3), pp. 900–906. [CrossRef]
Cortés-Romero, J. , Ramos, G. , and Coral-Enriquez, H. , 2014, “ Generalized Proportional Integral Control for Periodic Signals Under Active Disturbance Rejection Approach,” ISA Trans., 53(6), pp. 1901–1909. [CrossRef] [PubMed]
Fliess, M. , Marquez, R. , and Delaleau, E. , 2000, “ State Feedbacks Without Asymptotic Observers and Generalized PID Regulators,” Nonlinear Control in the Year 2000, Springer, London. [CrossRef]
Juárez-Abad, J. , Linares-Flores, J. , Guzmán-Ramírez, E. , and Sira-Ramirez, H. , 2014, “ Generalized Proportional Integral Tracking Controller for a Single-Phase Multilevel Cascade Inverter: An Fpga Implementation,” IEEE Trans. Ind. Inf., 10(1), pp. 256–266. [CrossRef]
Guo, B.-Z. , and Zhao, Z.-L. , 2013, “ On Convergence of the Nonlinear Active Disturbance Rejection Control for Mimo Systems,” SIAM J. Control Optim., 51(2), pp. 1727–1757. [CrossRef]
Madoński, R. , and Herman, P. , 2015, “ Survey on Methods of Increasing the Efficiency of Extended State Disturbance Observers,” ISA Trans., 56, pp. 18–27. [CrossRef] [PubMed]
Qi, X. , Xia, J. L. Y. , and Gao, Z. , 2017, “ On the Robust Stability of Active Disturbance Rejection Control for Siso Systems,” Circuits, Syst. Signal Process., 36(1), pp. 65–81. [CrossRef]
Feng, H. , and Guo, B.-Z. , 2017, “ Active Disturbance Rejection Control: Old and New Results,” Annu. Rev. Control. (in press).
Guo, B. , and Zhao, Z. , 2016, Active Disturbance Rejection Control for Nonlinear Systems: An Introduction, Wiley, Singapore. [CrossRef]
Huang, Y. , Xue, W. , Gao, Z. , Sira-Ramirez, H. , Wu, D. , and Sun, M. , 2014, “ Active Disturbance Rejection Control: Methodology, Practice and Analysis,” 33rd Chinese Control Conference (CCC), Nanjing, China, July 28–30 pp. 1–5.
Huang, C. , and Sira-Ramírez, H. , 2015, “ Flatness-Based Active Disturbance Rejection Control for Linear Systems With Unknown Time-Varying Coefficients,” Int. J. Control, 88(12), pp. 2578–2587. [CrossRef]
Zheng, Q. , and Gao, Z. , 2010, “ On Practical Applications of Active Disturbance Rejection Control,” 29th Chinese Control Conference (CCC), Beijing, China, July 29–31, pp. 6095–6100.
Zhao, S. , Sun, L. , Li, D. , and Gao, Z. , 2014, “ Tracking and Disturbance Rejection in Non-Minimum Phase Systems,” 33rd Chinese Control Conference (CCC), Nanjing, China, July 28–30, pp. 3834–3839.
Sira-Ramírez, H. , Hernández-Méndez, A. , Linares-Flores, J. , and Luviano-Juárez, A. , 2016, “ Robust Flat Filtering dsp Based Control of the Boost Converter,” Control Theory Technol., 14(3), pp. 224–236. [CrossRef]
Fliess, M. , Lévine, J. , Martin, P. , and Rouchon, P. , 1995, “ Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples,” Int. J. Control, 61(6), pp. 1327–1361. [CrossRef]
Sira-Ramírez, H. , and Agrawal, S. K. , 2004, Differentially Flat Systems, Marcel Dekker, New York. [PubMed] [PubMed]
Fliess, M. , Sira-Ramirez, H. , and Marquez, R. , 1998, “ Regulation of Non-Minimum Phase Outputs: A Flatness Based Approach,” Perspectives in Control, Springer, London, pp. 143–163. [CrossRef]
Ryu, J. , Sangwan, V. , and Agrawal, S. , 2010, “ Differentially Flat Designs of Underactuated Mobile Manipulators,” ASME J. Dyn. Syst., Meas. Control, 132(2), p. 024502. [CrossRef]
Van Nieuwstadt, M. , Rathinam, M. , and Murray, R. , 1998, “ Differential Flatness and Absolute Equivalence of Nonlinear Control Systems,” SIAM J. Control Optim., 36(4), pp. 1225–1239. [CrossRef]
Martin, P. , Murray, R. , and Rouchon, P. , 2001, “ Flat Systems, Equivalence and Feedback,” Advances in the Control of Nonlinear Systems, Springer, London, pp. 5–32. [CrossRef]
Martin, P. , Murray, R. M. , and Rouchon, P. , 2001, “ Flat Systems: Open Problems, Infinite Dimensional Extension, Symmetries and Catalog,” Advances in the Control of Nonlinear Systems, Springer, London, pp. 33–57. [CrossRef]
Fliess, M. , and Join, C. , 2013, “ Model-Free Control,” Int. J. Control, 86(12), pp. 2228–2252. [CrossRef]
Madoński, R. , and Herman, P. , 2012, “ Model-Free Control or Active Disturbance Rejection Control? on Different Approaches for Attenuating the Perturbation,” 20th Mediterranean Conference On Control & Automation (MED), Barcelona, Spain, July 3–6, pp. 60–65.
Chen, C. , 1995, Linear System Theory and Design, Oxford University Press, Oxford, UK.

Figures

Grahic Jump Location
Fig. 1

FF with 1 extra integrator for the control of a third-order pure integration system

Grahic Jump Location
Fig. 2

Bode diagram of closed-loop transfer function to be excited by the total perturbation input, ξ(t), for different values of the ϵ factor

Grahic Jump Location
Fig. 3

Steady state attenuation of disturbance driven closed-loop system output for several values of the gain factor ϵ

Grahic Jump Location
Fig. 4

Simulated performance of a linear controller on a fast angular position reference trajectory tracking task

Grahic Jump Location
Fig. 5

Simulated trajectory tracking performance of the FFC on the nonlinear single link manipulator-DC motor system

Grahic Jump Location
Fig. 6

Experimental setup for the single-link-DC motor manipulator system

Grahic Jump Location
Fig. 7

Experimental FFC trajectory tracking performance for the angular position in the single-link-DC motor manipulator system

Grahic Jump Location
Fig. 8

Experimental ADRC trajectory tracking performance for the angular position in the single-link-DC motor manipulator system

Grahic Jump Location
Fig. 9

Comparison between the ISTE index in FF and ADRC controllers

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In