Now, with $y\u0307$ defined in Eq. (1) and $y\u0302\u0307k$ defined in Eq. (3), the error dynamics are

$dvd\eta =g(x,y(\eta +tk),\eta +tk;\mu )\u2212\u2202h(x\xaf,\eta +tk)\u2202t\u2212{g(x\xaf,y\u0302k(\eta )+h(x\xaf,\eta +tk),\eta +tk;0)\u2212\u2202h(x\xaf,\eta +tk)\u2202t}=g(x,y,\eta +tk;\mu )\u2212g(x\xaf,y\u0302k+h(x\xaf,\eta +tk),\eta +tk;0)+{g(x\xaf,y,\eta +tk;\mu )\u2212g(x\xaf,y,\eta +tk;\mu )}+{g(x\xaf,y,\eta +tk;0)\u2212g(x\xaf,y,\eta +tk;0)}+{g(x\xaf,v+h(x\xaf,\eta +tk),\eta +tk;0)\u2212g(x\xaf,v+h(x\xaf,\eta +tk),\eta +tk;0)}+{g(x\xaf,h(x\xaf,\eta +tk),\eta +tk;0)\u2212\u2202h(x\xaf,\eta +tk)\u2202t}=g(x\xaf,v+h(x\xaf,\eta +tk),\eta +tk;0)\u2212\u2202h(x\xaf,\eta +tk)\u2202t+{g(x\xaf,v+y\u0302k+h(x\xaf,\eta +tk),\eta +tk;0)\u2212g(x\xaf,v+h(x\xaf,\eta +tk),\eta +tk;0)\u2212g(x\xaf,y\u0302k+h(x\xaf,\eta +tk),\eta +tk;0)+g(x\xaf,h(x\xaf,\eta +tk),\eta +tk;0)}\ufe38\Delta 1+{g(x\xaf,y,\eta +tk;\mu )\u2212g(x\xaf,y,\eta +tk;0)}\ufe38\Delta 2+{g(x,y,\eta +tk;\mu )\u2212g(x\xaf,y,\eta +tk;\mu )}\ufe38\Delta 3$