0
research-article

Model Following Adaptive Sliding Mode Tracking Control Based on a Disturbance Observer for the Mechanical Systems

[+] Author and Article Information
Kun-Yung Chen

Department of Mechanical Engineering, Air Force Institute of Technology, No. 198, Jieshou W. Rd., Gangshan Dist., Kaohsiung City 820, TAIWAN
u9615906@nkfust.edu.tw

1Corresponding author.

ASME doi:10.1115/1.4038165 History: Received May 07, 2017; Revised October 01, 2017

Abstract

A model following adaptive sliding mode tracking control (MFASMTC) with the adjustable control gain based on a disturbance observer (DOB) for the mechanical system is proposed in this paper. The control gains of the proposed controller are automatically adjusted to compensate the unknown time-varying disturbances by the DOB. Firstly, the unknown variables and uncertainties are lumped as the disturbance terms and the system dynamic model consists of the nominal matrix and disturbances vector. The desired model and sliding mode controller are integrated by using the Lyapunov function candidate to obtain the general model following sliding mode tracking control (MFSMTC) with the fixed control gain. To stabilize and compensate the unknown time-varying disturbances for the control system, a DOB is combined with the MFSMTC to obtain the MFASMTC to automatically adjust the control gains. The mass-spring-damper system and two-link manipulator robot system are both used as examples system to demonstrate the proposed control scheme, respectively. The comparisons between MFSMTC with the fixed control gain and MFASMTC with the adjustable control gain based on a DOB are performed in this paper. From the simulation results, the proposed MFASMTC with the adjustable control gain based on a DOB demonstrates the stable and robust control performance for the unknown uncertainties and external disturbances. The proposed control method also can be applied to the other mechanical systems with the desired model to find the desired model following adaptive sliding mode tracking control.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In