Rathinam, S.
,
Sengupta, R.
, and
Darbha, S.
, 2007, “A Resource Allocation Algorithm for Multivehicle Systems With Nonholonomic Constraints,” IEEE Trans. Autom. Sci. Eng., 4(1), pp. 98–104.

[CrossRef]
Le Ny, J.
,
Feron, E.
, and
Frazzoli, E.
, 2012, “On the Dubins Traveling Salesman Problem,” IEEE Trans. Autom. Control, 57(1), pp. 265–270.

[CrossRef]
Chandler, P.
, and
Pachter, M.
, 1998, “Research Issues in Autonomous Control of Tactical UAVS,” American Control Conference (ACC), Philadelphia, PA, June 24–26, pp. 394–398.

Medeiros, A. C.
, and
Urrutia, S.
, 2010, “Discrete Optimization Methods to Determine Trajectories for Dubins' Vehicles,” Electron. Notes Discrete Math., 36, pp. 17–24.

[CrossRef]
Macharet, D.
, and
Campos, M.
, 2014, “An Orientation Assignment Heuristic to the Dubins Traveling Salesman Problem,” Advances in Artificial Intelligence—IBERAMIA 2014, Santiago de Chile, Chile, Nov. 24–27, pp. 457–468.

Macharet, D. G.
,
Alves Neto, A.
,
da Camara Neto, V. F.
, and
Campos, M. F.
, 2013, “Efficient Target Visiting Path Planning for Multiple Vehicles With Bounded Curvature,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, Nov. 3–7, pp. 3830–3836.

Macharet, D. G.
,
Neto, A. A.
,
da Camara Neto, V. F.
, and
Campos, M. F.
, 2012, “Data Gathering Tour Optimization for Dubins' Vehicles,” 2012 IEEE Congress on Evolutionary Computation (CEC), Brisbane, Australia, June 10–15, pp. 1–8.

Sujit, P.
,
Hudzietz, B.
, and
Saripalli, S.
, 2013, “Route Planning for Angle Constrained Terrain Mapping Using an Unmanned Aerial Vehicle,” J. Intell. Rob. Syst., 69(1–4), pp. 273–283.

[CrossRef]
Kenefic, R. J.
, 2008, “Finding Good Dubins Tours for UAVS Using Particle Swarm Optimization,” J. Aerosp. Comput. Inf. Commun., 5(2), pp. 47–56.

[CrossRef]
Macharet, D. G.
,
Neto, A. A.
,
da Camara Neto, V. F.
, and
Campos, M. F.
, 2011, “Nonholonomic Path Planning Optimization for Dubins' Vehicles,” IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9–13, pp. 4208–4213.

Tang, Z.
, and
Ozguner, U.
, 2005, “Motion Planning for Multitarget Surveillance With Mobile Sensor Agents,” IEEE Trans. Rob., 21(5), pp. 898–908.

[CrossRef]
Savla, K.
,
Frazzoli, E.
, and
Bullo, F.
, 2008, “Traveling Salesperson Problems for the Dubins Vehicle,” IEEE Trans. Autom. Control, 53(6), pp. 1378–1391.

[CrossRef]
Epstein, C.
,
Cohen, I.
, and
Shima, T.
, 2017, “On the Discretized Dubins Traveling Salesman Problem,” IISE Trans., 49(2), pp. 238–254.

Ma, X.
, and
Castañón, D.
, 2006, “Receding Horizon Planning for Dubins Traveling Salesman Problems,” 45th IEEE Conference on Decision and Control (CDC), San Diego, CA, Dec. 13–15, pp. 5453–5458.

Isaacs, J. T.
, and
Hespanha, J. P.
, 2013, “Dubins Traveling Salesman Problem With Neighborhoods: A Graph-Based Approach,” Algorithms, 6(1), pp. 84–99.

[CrossRef]
Anderson, R. P.
, and
Milutinovic, D.
, 2014, “On the Construction of Minimum-Time Tours for a Dubins Vehicle in the Presence of Uncertainties,” ASME J. Dyn. Syst. Meas. Control, 137(3), p. 031001.

[CrossRef]
Isaiah, P.
, and
Shima, T.
, 2015, “Motion Planning Algorithms for the Dubins Travelling Salesperson Problem,” Automatica, 53, pp. 247–255.

[CrossRef]
Oberlin, P.
,
Rathinam, S.
, and
Darbha, S.
, 2010, “Today's Traveling Salesman Problem,” IEEE Rob. Autom. Mag., 17(4), pp. 70–77.

[CrossRef]
Manyam, S. G.
,
Rathinam, S.
,
Darbha, S.
, and
Obermeyer, K. J.
, 2015, “Lower Bounds for a Vehicle Routing Problem With Motion Constraints,” Int. J. Rob. Autom., 30(3).

https://drive.google.com/file/d/0BxCsQMzYKbV9eFdaWXlPdVMxTGM/view
Manyam, S. G.
,
Rathinam, S.
, and
Darbha, S.
, 2015, “Computation of Lower Bounds for a Multiple Depot, Multiple Vehicle Routing Problem With Motion Constraints,” ASME J. Dyn. Syst. Meas. Control, 137(9), p. 094501.

[CrossRef]
Manyam, S. G.
,
Rathinam, S.
,
Darbha, S.
, and
Obermeyer, K. J.
, 2012, “Computation of a Lower Bound for a Vehicle Routing Problem With Motion Constraints,” ASME Paper No. DSCC2012-MOVIC2012-8713.

Manyam, S. G.
,
Rathinam, S.
, and
Darbha, S.
, 2013, “Computation of Lower Bounds for a Multiple Depot, Multiple Vehicle Routing Problem With Motion Constraints,” IEEE 52nd Annual Conference on Decision and Control (CDC), Florence, Italy, Dec. 10–13, pp. 2378–2383.

Dubins, L. E.
, 1957, “On Curves of Minimal Length With a Constraint on Average Curvature, and With Prescribed Initial and Terminal Positions and Tangents,” Am. J. Math., 79(3), pp. 497–516.

[CrossRef]
Manyam, S. G.
,
Rathinam, S.
,
Casbeer, D.
, and
Garcia, E.
, 2017, “Tightly Bounding the Shortest Dubins Paths Through a Sequence of Points,” J. Intell. Rob. Syst., 88(2–4), pp. 495–511.

[CrossRef]
Noon, C. E.
, and
Bean, J. C.
, 1991, “A Lagrangian Based Approach for the Asymmetric Generalized Traveling Salesman Problem,” Oper. Res., 39(4), pp. 623–632.

[CrossRef]
Gutin, G.
, and
Punnen, A. P.
, eds., 2002, The Traveling Salesman Problem and Its Variations (Combinatorial Optimization), Kluwer Academic, Dordrecht, The Netherlands.

Applegate, D. L.
,
Bixby, R. E.
,
Chvatal, V.
, and
Cook, W. J.
, 2007, The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics), Princeton University Press, Princeton, NJ.

Goaoc, X.
,
Kim, H.-S.
, and
Lazard, S.
, 2013, “Bounded-Curvature Shortest Paths Through a Sequence of Points Using Convex Optimization,” SIAM J. Comput., 42(2), pp. 662–684.

[CrossRef]
Boissonnat, J.-D.
,
Crzo, A.
, and
Leblond, J.
, 1994, “Shortest Paths of Bounded Curvature in the Plane,” J. Intell. Rob. Syst., 11(1–2), pp. 5–20.

[CrossRef]