0
Research Papers

Magnetorheological Damping of Fragment Barrier Suspension Systems

[+] Author and Article Information
Kwon Joong Son

Mem. ASME
Department of Mechanical and
Design Engineering,
Hongik University,
Sejong 30016, South Korea
e-mail: kjson@hongik.ac.kr

Eric P. Fahrenthold

Professor
Mem. ASME
Department of Mechanical Engineering,
University of Texas at Austin,
Austin, TX 78712
e-mail: epfahren@mail.utexas.edu

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT,AND CONTROL. Manuscript received August 23, 2017; final manuscript received February 12, 2018; published online March 30, 2018. Editor: Joseph Beaman.

J. Dyn. Sys., Meas., Control 140(9), 091002 (Mar 30, 2018) (8 pages) Paper No: DS-17-1421; doi: 10.1115/1.4039414 History: Received August 23, 2017; Revised February 12, 2018

Magnetorheological (MR) fluids, well established as components of a variety of suspension systems, may offer opportunities to improve the performance of fabric ballistic protection systems, which typically do not incorporate significant energy dissipation mechanisms. A series of ballistic impact experiments has been conducted to investigate the potential of MR fluid damped fabric suspension systems to improve upon current fabric barrier designs. The results indicate that for the simple fabric suspension systems tested, MR fluid damping does not improve upon the very high weight specific ballistic performance of state of the art aramid fibers.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yang, H. H. , 1993, Kevlar Aramid Fiber, Wiley, New York.
Peacock, A. J. , 2000, Handbook of Polyethylene: Structures, Properties, and Applications, Marcel Dekker, New York.
David, N. V. , Gau, X.-L. , and Zheng, J. Q. , 2009, “ Ballistic Resistant Body Armor: Contemporary and Prospective Materials and Related Protection Mechanisms,” ASME Appl. Mech. Rev., 62(5), p. 050802. [CrossRef]
Naika, D. , Sankarana, S. , Mobashera, B. , Rajana, S. D. , and Pereira, J. M. , 2009, “ Development of Reliable Modeling Methodologies for Fan Blade Out Containment Analysis—Part I: Experimental Studies,” Int. J. Impact Eng., 36(1), pp. 1–11. [CrossRef]
Christiansen, E. L. , Crews, J. L. , Williamsen, J. E. , Robinson, J. H. , and Nolen, A. M. , 1995, “ Enhanced Meteoroid and Orbital Debris Shielding,” Int. J. Impact Eng., 17(1–3), pp. 217–228. [CrossRef]
Zhang, M. , Fang, S. , Zakhidov, A. A. , Lee, S. B. , Aliev, A. E. , Williams, C. D. , Atkinson, K. R. , and Baughman, R. H. , 2005, “ Strong, Transparent, Multifunctional, Carbon Nanotube Sheets,” Science, 309(5738), pp. 1215–1219. [CrossRef] [PubMed]
Martinez-Morlanes, M. J. , Castell, P. , Martinez-Nogues, V. , Martinez, M. T. , Alonso, P. J. , and Puertolas, J. A. , 2011, “ Effects of Gamma-Irradiation on UHMWPE/MWNT Nanocomposites,” Compos. Sci. Technol., 71(3), pp. 282–288. [CrossRef]
Ahmad, M. R. , Ahmad, W. Y. W. , Salleh, J. , and Samsuri, A. , 2007, “ Performance of Natural Rubber Coated Fabrics Under Ballistic Impact,” Malays. Polym. J., 2(1), pp. 39–51.
Ahmad, M. R. , Ahmad, W. Y. W. , Salleh, J. , and Samsuri, A. , 2008, “ Effect of Fabric Stitching on Ballistic Impact Performance of Natural Rubber Coated Fabric Systems,” Mater. Des., 29(7), pp. 1353–1358. [CrossRef]
Cork, C. R. , and Foster, P. W. , 2007, “ The Ballistic Performance of Narrow Fabrics,” Int. J. Impact Eng., 34(3), pp. 495–508. [CrossRef]
Burt, R. R. , and Christiansen, E. L. , 2003, “ An Enhanced Shutter to Protect Spacecraft Windows From Meteoroids and Orbital Debris,” Int. J. Impact Eng., 29(1–10), pp. 139–152. [CrossRef]
Zeng, X. S. , Shim, V. P. W. , and Tan, V. B. C. , 2005, “ Influence of Boundary Conditions on the Ballistic Performance of High-Strength Fabric Targets,” Int. J. Impact Eng., 32(1–4), pp. 631–642. [CrossRef]
Singletary, J. , Steinruck, T. , and Fitzgerald, P. , 2007, “ Effects of Boundary Conditions on V50 and Zone of Mixed Results of Fabric Armor Targets,” 23rd International Symposium on Ballistics, Tarragona, Spain, Apr. 16–20, pp. 865–871.
Zhang, G. , Batra, R. , and Zheng, J. , 2008, “ Effect of Frame Size, Frame Type, and Clamping Pressure on the Ballistic Performance of Soft Body Armor,” Composites, Part B, 39(3), pp. 476–489. [CrossRef]
Kciuk, M. , and Turczyn, R. , 2006, “ Properties and Application of Magnetorheological Fluids,” J. Achiev. Mater. Manuf. Eng., 18(1–2), pp. 127–130.
Deshmukh, S. S. , and McKinley, G. H. , 2007, “ Adaptive Energy-Absorbing Materials Using Field-Responsive Fluid-Impregnated Cellular Solids,” Smart Mater. Struct., 16(1), pp. 106–113. [CrossRef]
Chrzan, M. J. , and Carlson, J. D. , 2001, “ MR Fluid Sponge Devices and Their Use in Vibration Control of Washing Machines,” Proc. SPIE 4331, pp. 370–378.
Carlson, J. D. , and Jolly, M. R. , 2000, “ MR Fluid, Foam and Elastomer Devices,” Mechatronics, 10(4–5), pp. 555–569. [CrossRef]
Lurie, K. , 2003, “Instant Armor,” ScienCentral, MP Axle, Inc., Wilmington, DE, accessed Mar. 1, 2018, http://www.sciencentral.com/
Son, K. J. , and Fahrenthold, E. P. , 2012, “ Evaluation of Magnetorheological Fluid Augmented Fabric as a Fragment Barrier Material,” Smart Mater. Struct., 21(7), p. 075012. [CrossRef]
Qinetic North America, 2010, “LAST Armor Lightweight Spall Liners,” Brochure DS10-012, McLean, VA.
Rabb, R. J. , and Fahrenthold, E. P. , 2010, “ Impact Dynamics Simulation for Multilayer Fabrics,” Int. J. Numer. Methods Eng., 83(5), pp. 537–557.
Scott, R. A. , 2005, Textiles for Protection, CRC Press LLC, Boca Raton, FL.
Cheng, M. , Chen, W. , and Weerasooriya, T. , 2005, “ Mechanical Properties of Kevlar KM2 Single Fiber,” ASME J. Eng. Mater. Technol., 127(2), pp. 197–203. [CrossRef]
Son, K. J. , and Fahrenthold, E. P. , 2012, “ Evaluation of Magnetostrictive Composite Coated Fabric as a Fragment Barrier Material,” Smart Mater. Struct., 21(10), p. 105027. [CrossRef]
Balakrishnan, A. , Joines, W. T. , and Wilson, T. G. , 1997, “ Air-Gap Reluctance and Inductance Calculations for Magnetic Circuits Using a Schwarz-Christoffel Transformation,” IEEE Trans. Power Electron., 12(4), pp. 654–663. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Fabric target with fixed edge support

Grahic Jump Location
Fig. 2

Fabric target supported by edge dampers

Grahic Jump Location
Fig. 3

Fabric target, edge supported by an MRF shear damper (dashed line marks the target centerline)

Grahic Jump Location
Fig. 4

MRF-treated Kevlar fabric strip

Grahic Jump Location
Fig. 5

Schematic: MRF-Kevlar shear damper

Grahic Jump Location
Fig. 6

Photograph: MRF-Kevlar shear damper

Grahic Jump Location
Fig. 7

Test type 1: postimpact view

Grahic Jump Location
Fig. 8

Test type 1: FSP impact at 426 m/s: (a) t = 0 μs, (b) t = 50 μs, (c) t = 100 μs, and (d) t = 150 μs

Grahic Jump Location
Fig. 9

Test type 2: FSP impact at 411 m/s: (a) t = 0 μs, (b) t = 50 μs, (c) t = 100 μs, and (d) t = 150 μs

Grahic Jump Location
Fig. 10

Projectile residual velocity for the type 1 MRF damped targets

Grahic Jump Location
Fig. 11

Normalized energy absorption for the type 1 MRF damped targets

Grahic Jump Location
Fig. 12

Projectile residual velocity for the type 2 MRF damped targets

Grahic Jump Location
Fig. 13

Normalized energy absorption for the type 2 MRF damped targets

Grahic Jump Location
Fig. 14

Test classification schematic

Grahic Jump Location
Fig. 15

Relative performance of the MR fluid damped and elastically supported targets

Grahic Jump Location
Fig. 17

Pull test results

Grahic Jump Location
Fig. 18

Electromagnet and associated magnetic circuit

Grahic Jump Location
Fig. 19

Fringing effects at the edge poles

Grahic Jump Location
Fig. 20

Mild steel plate and edge postschematic, with air gap

Grahic Jump Location
Fig. 21

Magnetic field intensity versus air gap

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In