Welsh,
J. S.
, 2011, “
Contagious Cancer,” Oncologist,
16(1), pp. 1–4.

[CrossRef] [PubMed]
Koyanagi,
Y.
,
Itoyama,
Y.
,
Nakamura,
N.
,
Takamatsu,
K.
,
Kira,
J. I.
,
Iwamasa,
T.
,
Goto,
I.
, and
Yamamoto,
N.
, 1993, “
In Vivo Infection of Human T-Cell Leukemia Virus Type I in Non-T Cells,” Virology,
196(1), pp. 25–33.

[CrossRef] [PubMed]
Bai,
Z.
, and
Zhou,
Y.
, 2012, “
Dynamics of a Viral Infection Model With Delayed CTL Response and Immune Circadian Rhythm,” Chaos, Solitons Fractals,
45(9–10), pp. 1133–1139.

[CrossRef]
Asquith,
B.
, and
Bangham,
C. R.
, 2007, “
Quantifying HTLV-I Dynamics,” Immunol. Cell Biol.,
85(4), pp. 280–286.

[CrossRef] [PubMed]
Bangham,
C. R.
, 2000, “
The Immune Response to HTLV-I,” Curr. Opinion Immunol.,
12(4), pp. 397–402.

[CrossRef]
Lang,
J.
, and
Li,
M. Y.
, 2012, “
Stable and Transient Periodic Oscillations in a Mathematical Model for CTL Response to HTLV-I Infection,” J. Math. Biol.,
65(1), pp. 181–199.

[CrossRef] [PubMed]
Bangham,
C. R.
, 2003, “
Human T-Lymphotropic Virus Type 1 (HTLV-1): Persistence and Immune Control,” Int. J. Hematol.,
78(4), pp. 297–303.

[CrossRef] [PubMed]
Bangham,
C. R.
, 2003, “
The Immune Control and Cell-to-Cell Spread of Human T-Lymphotropic Virus Type 1,” J. Gen. Virol.,
84(Pt. 12), pp. 3177–3189.

[CrossRef] [PubMed]
Fan,
R.
,
Dong,
Y.
,
Huang,
G.
, and
Takeuchi,
Y.
, 2014, “
Apoptosis in Virus Infection Dynamics Models,” J. Biol. Dyn.,
8(1), pp. 20–41.

[CrossRef] [PubMed]
Shamsara,
E.
,
Afsharnejad,
Z.
, and
Mostolizadeh,
R.
, 2017, “
Hopf Bifurcation for a Discontinuous Htlv-1 Model,” FILOMAT, **31**(20), pp. 6247–6267.

Nowak,
M.
, and
May,
R. M.
, 2000, Virus Dynamics: Mathematical Principles of Immunology and Virology,
Oxford University Press, Oxford, UK.

Gómez-Acevedo,
H.
,
Li,
M. Y.
, and
Jacobson,
S.
, 2010, “
Multistability in a Model for CTL Response to HTLV-I Infection and Its Implications to HAM/TSP Development and Prevention,” Bull. Math. Biol.,
72(3), pp. 681–696.

[CrossRef] [PubMed]
Li,
M. Y.
, and
Shu,
H.
, 2012, “
Global Dynamics of a Mathematical Model for HTLV-I Infection of CD4+ T Cells With Delayed CTL Response,” Nonlinear Anal.: Real World Appl.,
13(3), pp. 1080–1092.

[CrossRef]
Shamsara,
E.
,
Mostolizadeh,
R.
, and
Afsharnezhad,
Z.
, 2016, “
Transcritical Bifurcation of an Immunosuppressive Infection Model,” Iranian J. Numer. Anal. Optim.,
6(2), pp. 1–16.

Wodarz,
D.
, 2007, Killer Cell Dynamics, Vol.
32,
Springer, Cham, Switzerland.

[CrossRef]
Balasubramaniam,
P.
,
Tamilalagan,
P.
, and
Prakash,
M.
, 2015, “
Bifurcation Analysis of HIV Infection Model With Antibody and Cytotoxic T-Lymphocyte Immune Responses and Beddington–DeAngelis Functional Response,” Math. Methods Appl. Sci.,
38(7), pp. 1330–1341.

[CrossRef]
Egami,
C.
, 2009, “
Bifurcation Analysis of the Nowak–Bangham Model in CTL Dynamics,” Math. Biosci.,
221(1), pp. 33–42.

[CrossRef] [PubMed]
Hethcote,
H. W.
, 2000, “
The Mathematics of Infectious Diseases,” SIAM Rev.,
42(4), pp. 599–653.

[CrossRef]
Z. Hu
,
X. Z., Liu
,
H. X., Wang
, and
Ma,
W.
, 2010, “
Analysis of the Dynamics of a Delayed HIV Pathogenesis Model,” J. Comput. Appl. Math.,
234(2), pp. 461–476.

[CrossRef]
Li,
M. Y.
, and
Shu,
H.
, 2011, “
Multiple Stable Periodic Oscillations in a Mathematical Model of CTL Response to HTLV-I Infection,” Bull. Math. Biol.,
73(8), pp. 1774–1793.

[CrossRef] [PubMed]
Muroya,
Y.
,
Enatsu,
Y.
, and
Li,
H.
, 2013, “
Global Stability of a Delayed HTLV-I Infection Model With a Class of Nonlinear Incidence Rates and CTLs Immune Response,” Appl. Math. Comput.,
219(21), pp. 10559–10573.

Shamsara,
E.
,
Afsharnezhad,
Z.
, and
Efatti,
S.
, 2018, “Optimal Drug Control of a Four Dimensional HIV Infection Model,” Acta Biotheoritica, in press.

Shu,
H.
,
Wang,
L.
, and
Watmough,
J.
, 2013, “
Global Stability of a Nonlinear Viral Infection Model With Infinitely Distributed Intracellular Delays and CTL Immune Responses,” SIAM J. Appl. Math.,
73(3), pp. 1280–1302.

[CrossRef]
Tian,
X.
, and
Xu,
R.
, 2014, “
Global Stability and Hopf Bifurcation of an HIV-1 Infection Model With Saturation Incidence and Delayed CTL Immune Response,” Appl. Math. Comput.,
237, pp. 146–154.

Xie,
Q.
,
Huang,
D.
,
Zhang,
S.
, and
Cao,
J.
, 2010, “
Analysis of a Viral Infection Model With Delayed Immune Response,” Appl. Math. Modell.,
34(9), pp. 2388–2395.

[CrossRef]
Afsharnezhad,
Z.
, and
Amaleh,
M. K.
, 2011, “
Continuation of the Periodic Orbits for the Differential Equation With Discontinuous Right Hand Side,” J. Dyn. Differ. Equations,
23(1), pp. 71–92.

[CrossRef]
Akhmet,
M.
, 2010, Principles of Discontinuous Dynamical Systems,
Springer Science & Business Media, New York.

[CrossRef] [PubMed] [PubMed]
Gouzé,
J. L.
, and
Sari,
T.
, 2002, “
A Class of Piecewise Linear Differential Equations Arising in Biological Models,” Dyn. Syst.,
17(4), pp. 299–316.

[CrossRef]
Elaiw,
A. M.
, 2010, “
Global Properties of a Class of HIV Models,” Nonlinear Anal.: Real World Appl.,
11(4), pp. 2253–2263.

[CrossRef]
Shamsara,
E.
,
Shamsara,
J.
, and
Afsharnezhad,
Z.
, 2016, “
Optimal Control Therapy and Vaccination for Special HIV-1 Model With Delay,” Theory Biosci.,
135(4), pp. 217–230.

[CrossRef] [PubMed]
Rihan,
F. A.
, and
Rihan,
B. F.
, 2015, “
Numerical Modelling of Biological Systems With Memory Using Delay Differential Equations,” Appl. Math.,
9(3), pp. 1645–1658.

Di Bernardo,
M.
,
Budd,
C. J.
,
Champneys,
A. R.
,
Kowalczyk,
P.
,
Nordmark,
A. B.
,
Tost,
G. O.
, and
Piiroinen,
P. T.
, 2008, “
Bifurcations in Nonsmooth Dynamical Systems,” SIAM Rev.,
50(4), pp. 629–701.

[CrossRef]
Filippov,
A. F.
, 1988, Differential Equations With Discontinuous Right Hand Sides: Control Systems, Springer, Dordrecht, The Netherlands.

Kunze,
M.
, and
Küpper,
T.
, 2001, Non-Smooth Dynamical Systems: An Overview,
Springer, Berlin.

[CrossRef]
Leine,
R. I.
, and
Nijmeijer,
H.
, 2013, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Vol.
18,
Springer Science & Business Media, Berlin.

Kuznetsov,
Y. A.
, 2013, Elements of Applied Bifurcation Theory, Vol.
112,
Springer Science & Business Media, New York.

Moiola,
J. L.
, and
Chen,
G.
, 1996, Hopf Bifurcation Analysis,
World Scientific, Singapore.

[CrossRef]
Allwright,
D. J.
, 1977, “Harmonic Balance and the Hopf Bifurcation,” Math. Proc. Cambridge Philos. Soc.,
82(3), pp. 453–467.

Mees,
A.
, and
Chua,
L.
, 1979, “
The Hopf Bifurcation Theorem and Its Applications to Nonlinear Oscillations in Circuits and Systems,” IEEE Trans. Circuits Syst.,
26(4), pp. 235–254.

[CrossRef]
Mees,
A. I.
, 1981, Dynamics of Feedback Systems,
Wiley, New York.

Xu,
C.
,
Tang,
X.
, and
Liao,
M.
, 2010, “
Frequency Domain Analysis for Bifurcation in a Simplified Tri-Neuron BAM Network Model With Two Delays,” Neural Networks,
23(7), pp. 872–880.

[CrossRef] [PubMed]
Moiola,
J. L.
, and
Chen,
G.
, 1993, “
Frequency Domain Approach to Computation and Analysis of Bifurcations and Limit Cycles: A Tutorial,” Int. J. Bifurcation Chaos,
3(4), pp. 843–867.

[CrossRef]
Yu,
W.
, and
Cao,
J.
, 2007, “
Stability and Hopf Bifurcation on a Two-Neuron System With Time Delay in the Frequency Domain,” Int. J. Bifurcation Chaos,
17(4), pp. 1355–1366.

[CrossRef]
Irving,
R. S.
, 2003, Integers, Polynomials, and Rings: A Course in Algebra,
Springer Science & Business Media, New York.