Blakelock,
J. H.
, 1991, Automatic Control of Aircraft and Missiles,
Wiley,
New York.

Nesline,
F. W.
,
Wells,
B. H.
, and
Zarchan,
P.
, 1979, “
A Combined Optimal/Classical Approach to Robust Missile Autopilot Design,” J. Guid. Control Dyn.,
4(3), pp. 316–322.

https://arc.aiaa.org/doi/10.2514/6.1979-1731
Parkhi,
P. P.
,
Bandyopadhyay,
B.
, and
Jha,
M.
, 2013, “
Roll Autopilot Design Using Second Order Sliding Mode,” Int. J. Autom. Control,
7(3), p. 202.

[CrossRef]
Trivedi,
P. K.
,
Bandyopadhyay,
B.
,
Mahata,
S.
, and
Chaudhuri,
S.
, 2015, “
Roll Stabilization: A Higher-Order Sliding-Mode Approach,” IEEE Trans. Aerosp. Electron. Syst.,
51(3), pp. 2489–2496.

[CrossRef]
Mohammadi,
M. R.
,
Jegarkandi,
M. F.
, and
Moarrefianpour,
A.
, 2016, “
Robust Roll Autopilot Design to Reduce Couplings of a Tactical Missile,” Aerosp. Sci. Technol.,
51, pp. 142–150.

[CrossRef]
Sankar,
R. B.
,
Bandyopadhyay,
B.
, and
Arya,
H.
, 2016, “
Roll Autopilot Design of a Tactical Missile Using Higher Order Sliding Mode Technique,” Indian Control Conference (ICC), Hyderabad, India, Jan. 4–6, pp. 298–303.

Parkhi,
P.
,
Bandyopadhyay,
B.
, and
Jha,
M.
, 2010, “
Design of Roll Autopilot for a Tail Controlled Missile Using Sliding Mode Technique,” 11th International Workshop on Variable Structure Systems (VSS), Mexico City, Mexico, June 26–28, pp. 389–394.

Papachristodoulou,
A.
, and
Prajna,
S.
, 2005, “
Analysis of Non-Polynomial Systems Using the Sum of Squares Decomposition,” *Positive Polynomials in Control* (Lecture Notes in Control and Information Sciences), Springer, Berlin, pp. 23–43.

Papachristodoulou,
A.
,
Anderson,
J.
,
Valmorbida,
G.
,
Prajna,
S.
,
Seiler,
P.
, and
Parrilo,
P. A.
, 2016, “
SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, Users Guide,” accessed May 23, 2018,

http://www.cds.caltech.edu/sostools
Papachristodoulou,
A.
, and
Prajna,
S.
, 2002, “
On the Construction of Lyapunov Functions Using the Sum of Squares Decomposition,” 41st IEEE Conference on Decision and Control, Las Vegas, NV, Dec. 10–13, pp. 3482–3487.

Papachristodoulou,
A.
, 2004, “
Analysis of Nonlinear Time-Delay Systems Using the Sum of Squares Decomposition,” American Control Conference (ACC), Boston, MA, June 30–July 2, pp. 4153–4158.

https://ieeexplore.ieee.org/document/1383959/
Prajna,
S.
, and
Jadbabaie,
A.
, 2004, “
Safety Verification of Hybrid Systems Using Barrier Certificates,” Hybrid Systems: Computation and Control (Lecture Notes in Computer Science),
Springer,
Berlin, pp. 477–492.

[CrossRef]
Tan,
W.
, and
Packard,
A.
, 2008, “
Stability Region Analysis Using Polynomial and Composite Polynomial Lyapunov Functions and Sum-of-Squares Programming,” IEEE Trans. Autom. Control,
53(2), pp. 565–571.

[CrossRef]
Khodadadi,
L.
,
Samadi,
B.
, and
Khaloozadeh,
H.
, 2014, “
Estimation of Region of Attraction for Polynomial Nonlinear Systems: A Numerical Method,” ISA Trans.,
53(1), pp. 25–32.

[CrossRef] [PubMed]
Zakeri,
H.
, and
Antsaklis,
P. J.
, 2016, “
Local Passivity Analysis of Nonlinear Systems: A Sum-of-Squares Optimization Approach,” American Control Conference (ACC), Boston, MA, July 6–8, pp. 246–251.

Aylward,
E. M.
,
Parrilo,
P. A.
, and
Slotine,
J.-J. E.
, 2008, “
Stability and Robustness Analysis of Nonlinear Systems Via Contraction Metrics and SOS Programming,” Automatica,
44(8), pp. 2163–2170.

[CrossRef]
Prajna,
S.
,
Papachristodoulou,
A.
, and
Wu,
F.
, 2004, “
Nonlinear Control Synthesis by Sum-of-Squares Optimization: A Lyapunov-Based Approach,” Fifth Asian Control Conference, Melbourne, Australia, July 20–23, pp. 157–165.

https://ieeexplore.ieee.org/document/1425952/
Zhao,
D.
, and
Wang,
J.
, 2009, “
An Improved Nonlinear H_{∞} Synthesis for Parameter-Dependent Polynomial Nonlinear Systems Using SOS Programming,” American Control Conference (ACC), St. Louis, MO, June 10–12, pp. 796–801.

Zhao,
D.
, and
Wang,
J.-L.
, 2010, “
Robust Static Output Feedback Design for Polynomial Nonlinear Systems,” Int. J. Robust Nonlinear Control,
20(14), pp. 1637–1654.

[CrossRef]
Manchester,
I. R.
, and
Slotine,
J.-J. E.
, 2014, “
Output-Feedback Control of Nonlinear Systems Using Control Contraction Metrics and Convex Optimization,” Fourth Australian Control Conference (AUCC), Canberra, Australia, Nov. 17–18, pp. 215–220.

Manchester,
I. R.
, and
Slotine,
J.-J. E.
, 2017, “
Control Contraction Metrics: Convex and Intrinsic Criteria for Nonlinear Feedback Design,” IEEE Trans. Autom. Control,
62(6), pp. 3046–3053.

[CrossRef]
Madeira,
D. D. S.
, and
Adamy,
J.
, 2016, “
Asymptotic Stabilization of Nonlinear Systems Using Passivity Indices,” American Control Conference (ACC), Boston, MA, July 6–8, pp. 1154–1159.

Han,
D.
, and
Althoff,
M.
, 2015, “
Control Synthesis for Non-Polynomial Systems: A Domain of Attraction Perspective,” 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, Dec. 15–18, pp. 1160–1167.

Maier,
C.
,
Bohm,
C.
,
Deroo,
F.
, and
Allgower,
F.
, 2010, “
Predictive Control for Polynomial Systems Subject to Constraints Using Sum of Squares,” 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, July 6–8, Dec. 15–17, pp. 3433–3438.

Prajna,
S.
,
Parrilo,
P.
, and
Rantzer,
A.
, 2004, “
Nonlinear Control Synthesis by Convex Optimization,” IEEE Trans. Autom. Control,
49(2), pp. 310–314.

[CrossRef]
Rantzer,
A.
, 2001, “
A Dual to Lyapunov's Stability Theorem,” Syst. Control Lett.,
42(3), pp. 161–168.

[CrossRef]
Ataei,
A.
, and
Wang,
Q.
, 2012, “
Non-Linear Control of an Uncertain Hypersonic Aircraft Model Using Robust Sum-of-Squares Method,” IET Control Theory Appl.,
6(2), p. 203.

[CrossRef]
Kwon,
H. H.
,
Seo,
M. W.
,
Jang,
D. S.
, and
Choi,
H. L.
, 2014, “
Sum-of-Squares Based Stability Analysis for Skid-to-Turn Missiles With Three-Loop Autopilot,” 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, Sept. 7–12, pp. 1–8.

http://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0787_paper.pdf
Zakeri,
H.
, and
Ozgoli,
S.
, 2012, “
A Polynomial Modeling and State Feedback Control of Blood Glucose Regulatory in Diabetic Patients,” Fourth International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, June 12–14, pp. 388–392.

Yu,
J.
,
Yan,
Z.
,
Wang,
J.
, and
Li,
Q.
, 2013, “
Robust Stabilization of Ship Course Via Convex Optimization,” Asian J. Control,
16(3), pp. 871–877.

[CrossRef]
Zakeri,
H.
, and
Ozgoli,
S.
, 2014, “
A Sum of Squares Approach to Robust PI Controller Synthesis for a Class of Polynomial Multi-Input Multi-Output Nonlinear Systems,” Nonlinear Dyn.,
76(2), pp. 1485–1495.

[CrossRef]
Sturm,
F. J.
, 1999, “
Using SeDuMi 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones,” Optim. Methods Software,
11(1–4), pp. 625–653.

[CrossRef]
Pozo,
F.
, and
Rodellar,
J.
, 2010, “
Robust Stabilisation of Polynomial Systems With Uncertain Parameters,” Int. J. Syst. Sci.,
41(5), pp. 575–584.

[CrossRef]