Khadraoui,
S.
,
Rakotondrabe,
M.
, and
Lutz,
P.
, 2012, “
Interval Modeling and Robust Control of Piezoelectric Microactuators,” IEEE Trans. Control Syst. Technol.,
20(2), pp. 486–494.

[CrossRef]
Khadraoui,
S.
,
Rakotondrab-e,
M.
, and
Lutz,
P.
, 2014, “
Interval Force/Position Modeling and Control of a Microgripper Composed of Two Collaborative Piezoelectric Actuators and Its Automation,” Int. J. Control, Autom. Syst.,
12(2), pp. 358–371.

[CrossRef]
Khadraoui,
S.
,
Rakotondrabe,
M.
, and
Lutz,
P.
, 2013, “
Design of a Fixed-Order Rst Controller for Interval Systems: Application to the Control of Piezoelectric Actuators,” Asian J. Control,
15(1), pp. 142–154.

[CrossRef]
Smagina,
Y.
, and
Brewer,
I.
, 2002, “
Using Interval Arithmetic for Robust State Feedback Design,” Syst. Control Lett.,
46(3), pp. 187 –194.

[CrossRef]
Smagina,
Y.
, and
Brewer,
I.
, 2000, “
Robust Modal p and Pi Regulator Synthesis for a Plant With Interval Parameters in the State Space,” American Control Conference (ACC), Chicago, IL, June 28–30, pp. 1317–1321.

Dugarova
, 1989, “
Application of Interval Analysisfor the Design of the Control Systems With Uncertain Parameters,” Ph.D. thesis, Tomsk State University, Tomsk (In Russian).

Rakotondrabe,
M.
, 2011, “
Performances Inclusion for Stable Interval Systems,” American Control Conference (ACC), San Francisco, CA, June 29–July 1, pp. 4367–4372.

Khadraoui,
S.
,
Rakotondrabe,
M.
, and
Lutz,
P.
, 2012, “
Combining h-Inf Approach and Interval Tools to Design a Low Order and Robust Controller for Systems With Parametric Uncertainties: Application to Piezoelectric Actuators,” Int. J. Control,
85(3), pp. 251–259.

[CrossRef]
Khadraoui,
S.
,
Rakotondrabe,
M.
, and
Lutz,
P.
, 2010, “
Robust Control for a Class of Interval Model: Application to the Force Control of Piezoelectric Cantilevers,” 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, Dec. 15–17, pp. 4257–4262.

Prado,
M. L.
,
Lordelo,
A. D.
, and
Ferreira,
P. A.
, 2005, “
Robust Pole Assignment by State Feedback Control Using Interval Analysis,” 16th Triennial World Congress, Prague, Czech Republic, pp. 951–951.

Ordaz,
P.
, and
Poznyak,
A.
, 2015, “
Kl-Gain Adaptation for Attractive Ellipsoid Method,” IMA J. Math. Control Inf.,
32(3), pp. 447–469.

[CrossRef]
Ordaz,
P.
, 2017, “
Nonlinear Robust Output Stabilization for Mechanical Systems Based on Luenberger-like Controller/Observer,” ASME J. Dyn. Syst. Meas. Control,
139(8), p. 084501.

[CrossRef]
Haqiri,
T.
, and
Poloni,
F.
, 2015, “
Methods for Verified Solutions to Continuous-Time Algebraic Riccati Equations,” preprint arXiv: 1509.02015.

Miyajima,
S.
, 2015, “
Fast Verified Computation for Solutions of Continuous-Time Algebraic Riccati Equations,” Jpn. J. Ind. Appl. Math.,
32(2), pp. 529–544.

[CrossRef]
Hashemi,
B.
, and
Dehghan,
M.
, 2012, “
The Interval Lyapunov Matrix Equation: Analytical Results and an Efficient Numerical Technique for Outer Estimation of the United Solution Set,” Math. Comput. Modell.,
55(3–4), pp. 622–633.

[CrossRef]
Frommer,
A.
, and
Hashemi,
B.
, 2012, “
Verified Error Bounds for Solutions of Sylvester Matrix Equations,” Linear Algebra Its Appl.,
436(2), pp. 405–420.

[CrossRef]
Jaulin,
L.
, and
Walter,
E.
, 1993, “
Set Inversion Via Interval Analysis for Nonlinear Bounded-Error Estimation,” Automatica,
29(4), pp. 1053–1064.

[CrossRef]
Jaulin,
L.
, 2001, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Vol.
1,
Springer Science & Business Media, London.

Moore,
R. E.
,
Kearfott,
R. B.
, and
Cloud,
M. J.
, 2009, Introduction to Interval Analysis,
SIAM, Philadelphia, PA.

Deif,
A.
, 1991, “
The Interval Eigenvalue Problem,” ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Mech.,
71(1), pp. 61–64.

[CrossRef]
Kolev,
L.
, and
Petrakieva,
S.
, 2005, “
Assessing the Stability of Linear Time-Invariant Continuous Interval Dynamic Systems,” Autom. Control, IEEE Trans.,
50(3), pp. 393–397.

[CrossRef]
Hladík,
M.
, 2013, “
Bounds on Eigenvalues of Real and Complex Interval Matrices,” Appl. Math. Comput.,
219(10), pp. 5584–5591.

Mayer,
G.
, 1994, “
A Unified Approach to Enclosure Methods for Eigenpairs,” ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Mech.,
74(2), pp. 115–128.

[CrossRef]
Ahn,
H.-S.
,
Moore,
K. L.
, and
Chen,
Y.
, 2006, “
Monotonic Convergent Iterative Learning Controller Design Based on Interval Model Conversion,” IEEE Trans. Autom. Control,
51(2), pp. 366–371.

[CrossRef]
Leng,
H.
, and
He,
Z.
, 2017, “
Eigenvalue Bounds for Symmetric Matrices With Entries in One Interval,” Appl. Math. Comput.,
299, pp. 58–65.

Bhattacharyya,
S.
,
Chapellat,
H.
, and
Keel,
L.
, 1995, Robust Control: The Parametric Approach, Prentice Hall,
Upper Saddle River, NJ.

Hussein,
M. T.
, 2011, “
Assessing 3D Uncertain System Stability by Using MATLAB Convex Hull Functions,” Int. J. Adv. Comput. Sci. Appl., (IJACSA),
2(6), pp. 13–18.

Syrmos,
V. L.
,
Abdallah,
C. T.
,
Dorato,
P.
, and
Grigoriadis,
K.
, 1997, “
Static Output Feedback a Survey,” Automatica,
33 (2), pp. 125–137.

[CrossRef]
Lee,
T.-T.
, and
Lee,
T.-T. S.-H.
, 1987, “
Root Clustering in Subregions of the Complex Plane,” Int. J. Syst. Sci.,
18(1), pp. 117–129.

[CrossRef]
Chen,
C.-T.
, 1970, Introduction to Linear System Theory,
Holt, Rinehart, and Winston, New York.

Dorf,
R. C.
, and
Bishop,
R. H.
, 1998, “
Modern Control Systems,” 13th ed., Pearson, London.

Tymerski,
R.
, and
Rytkonen,
F.
, 2012, “
Control System Design,” Pearson, London.

Horng,
I.-R.
,
Horng,
H.-Y.
, and
Chou,
J.-H.
, 1993, “
Eigenvalue Clustering in Subregions of the Complex Plane for Interval Dynamic Systems,” Int. J. Syst. Sci.,
24(5), pp. 901–914.

[CrossRef]
Gutman,
S.
, and
Jury,
E. I.
, 1981, “
A General Theory for Matrix Root-Clustering in Subregions of the Complex Plane,” IEEE Trans. Autom. Control,
26(4), pp. 853–863.

[CrossRef]
Kailath,
T.
, 1980, Linear Systems. Prentice Hall Information and System Sciences Series,
Prentice Hall,
Englewood Cliffs, NJ.

Jaulin,
L.
, and
Desrochers,
B.
, 2014, “
Introduction to the Algebra of Separators With Application to Path Planning,” Eng. Appl. Artif. Intell.,
33, pp. 141–147.

[CrossRef]
Lewis,
F. L.
,
Vrabie,
D.
, and
Syrmos,
V. L.
, 2012, Optimal Control,
Wiley, Hoboken, NJ.

Seif,
N.
,
Hussein,
S.
, and
Deif,
A.
, 1994, “
The Interval Sylvester Equation,” Comput.,
52(3), pp. 233–244.

[CrossRef]
Rohn,
J.
, 1989, “
Systems of Linear Interval Equations,” Linear Algebra Appl.,
126, pp. 39–78.

[CrossRef]
Oettli,
W.
, 1965, “
On the Solution Set of a Linear System With Inaccurate Coefficients,” J. Soc. Ind. Appl. Math., Ser. B: Numer. Anal.,
2(1), pp. 115–118.

[CrossRef]
Hassan,
R.
,
Cohanim,
B.
,
De Weck,
O.
, and
Venter,
G.
, 2005, “
A Comparison of Particle Swarm Optimization and the Genetic Algorithm,” AIAA Paper No. 2005-1987.

Rakotondrabe,
M.
, 2013, Smart Materials Based Actuators at the Micro/Nano-Scale. Characterization, Control and Applications,
Springer-Verlag, New York.

Xie,
H.
,
Rakotondrabe,
M.
, and
Régnier,
S.
, 2009, “
Characterizing Piezoscanner Hysteresis and Creep Using Optical Levers and a Reference Nanopositioning Stage,” Rev. Sci. Instrum.,
80(4), p. 046102.

[CrossRef] [PubMed]
Devasia,
S.
,
Eleftheriou,
E.
, and
Moheimani,
S. O. R.
, 2007, “
A Survey of Control Issues in Nanopositioning,” IEEE Trans. Control Syst. Technol.,
15(5), pp. 802–823.

[CrossRef]
Agnus,
J.
,
Chaillet,
N.
,
Clévy,
C.
,
Dembélé,
S.
,
Gauthier,
M.
,
Haddab,
Y.
,
Laurent,
G.
,
Lutz,
P.
,
Piat,
N.
,
Rabenorosoa,
K.
,
Rakotondrabe, M.
, and
Tamadazte, B.
, 2013, “
Robotic Microassembly and Micromanipulation at Femto-St,” J. Micro-Bio Rob.,
8(2), pp. 91–106.

[CrossRef]
Juan Antonio Escareno,
M. R.
, and
Habineza,
D.
, 2015, “
Backstepping-Based Robust-Adaptive Control of a Nonlinear 2Dof Piezoactuator,” IFAC Control Eng. Pract.,
41, pp. 57–71.

[CrossRef]
Rakotondrabe,
M.
,
Haddab,
Y.
, and
Lutz,
P.
, 2009, “
Quadrilateral Modelling and Robust Control of a Nonlinear Piezoelectric Cantilever,” IEEE Trans. Control Syst. Technol.,
17(3), pp. 528–539.

[CrossRef]
Rakotondrabe,
M.
, 2014, “
Piezoelectric Systems for Precise and High Dynamic Positioning: Design, Modeling, Estimation and Control,” HDR halititation thesis, Université de Franche-Comté, Besançon, France.

Ljung,
L.
, 1988, System Identification Toolbox: User's Guide, MathWorks, Inc., Natick, MA.

Premaratne,
K.
,
Jury,
E.
, and
Mansour,
M.
, 1990, “
Multivariable Canonical Forms for Model Reduction of 2-d Discrete Time Systems,” IEEE Trans. Circuits Syst.,
37(4), pp. 488–501.

[CrossRef]
Skogestad,
S.
, 2007, Multivariable Feedback Control: Analysis and Design, Vol.
2, Wiley, Chichester, UK.