0
Research Papers

Robust and Optimal Output-Feedback Control for Interval State-Space Model: Application to a Two-Degrees-of-Freedom Piezoelectric Tube Actuator

[+] Author and Article Information
Mounir Hammouche, Philippe Lutz

Automatic Control and MicroMechatronic
Systems Department,
FEMTO-ST Institute,
Université Bourgogne Franche-Comté, CNRS,
24, rue Alain Savary,
Besançon 25000, France

Micky Rakotondrabe

Automatic Control and MicroMechatronic
Systems Department,
FEMTO-ST Institute,
Université Bourgogne Franche-Comté, CNRS,
24, rue Alain Savary,
Besançon 25000, France
e-mail: mrakoton@femto-st.fr

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT,AND CONTROL. Manuscript received January 24, 2018; final manuscript received July 18, 2018; published online October 10, 2018. Assoc. Editor: Dumitru I. Caruntu.

J. Dyn. Sys., Meas., Control 141(2), 021008 (Oct 10, 2018) (14 pages) Paper No: DS-18-1039; doi: 10.1115/1.4040977 History: Received January 24, 2018; Revised July 18, 2018

The problem of robust and optimal output feedback design for interval state-space systems is addressed in this paper. Indeed, an algorithm based on set inversion via interval analysis (SIVIA) combined with interval eigenvalues computation and eigenvalues clustering techniques is proposed to seek for a set of robust gains. This recursive SIVIA-based algorithm allows to approximate with subpaving the set solutions [K] that satisfy the inclusion of the eigenvalues of the closed-loop system in a desired region in the complex plane. Moreover, the LQ tracker design is employed to find from the set solutions [K] the optimal solution that minimizes the inputs/outputs energy and ensures the best behaviors of the closed-loop system. Finally, the effectiveness of the algorithm is illustrated by a real experimentation on a piezoelectric tube actuator.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Khadraoui, S. , Rakotondrabe, M. , and Lutz, P. , 2012, “ Interval Modeling and Robust Control of Piezoelectric Microactuators,” IEEE Trans. Control Syst. Technol., 20(2), pp. 486–494. [CrossRef]
Khadraoui, S. , Rakotondrab-e, M. , and Lutz, P. , 2014, “ Interval Force/Position Modeling and Control of a Microgripper Composed of Two Collaborative Piezoelectric Actuators and Its Automation,” Int. J. Control, Autom. Syst., 12(2), pp. 358–371. [CrossRef]
Khadraoui, S. , Rakotondrabe, M. , and Lutz, P. , 2013, “ Design of a Fixed-Order Rst Controller for Interval Systems: Application to the Control of Piezoelectric Actuators,” Asian J. Control, 15(1), pp. 142–154. [CrossRef]
Smagina, Y. , and Brewer, I. , 2002, “ Using Interval Arithmetic for Robust State Feedback Design,” Syst. Control Lett., 46(3), pp. 187 –194. [CrossRef]
Smagina, Y. , and Brewer, I. , 2000, “ Robust Modal p and Pi Regulator Synthesis for a Plant With Interval Parameters in the State Space,” American Control Conference (ACC), Chicago, IL, June 28–30, pp. 1317–1321.
Dugarova , 1989, “ Application of Interval Analysisfor the Design of the Control Systems With Uncertain Parameters,” Ph.D. thesis, Tomsk State University, Tomsk (In Russian).
Patre, B. M. , and Deore, P. J. , 2010, “ Robust State Feedback for Interval Systems: An Interval Analysis Approach,” Reliable Comput., 14(1), pp. 46–60. https://pdfs.semanticscholar.org/eb71/733cbe61b85f2360a169eac016f622f0c04f.pdf
Rakotondrabe, M. , 2011, “ Performances Inclusion for Stable Interval Systems,” American Control Conference (ACC), San Francisco, CA, June 29–July 1, pp. 4367–4372.
Khadraoui, S. , Rakotondrabe, M. , and Lutz, P. , 2012, “ Combining h-Inf Approach and Interval Tools to Design a Low Order and Robust Controller for Systems With Parametric Uncertainties: Application to Piezoelectric Actuators,” Int. J. Control, 85(3), pp. 251–259. [CrossRef]
Khadraoui, S. , Rakotondrabe, M. , and Lutz, P. , 2010, “ Robust Control for a Class of Interval Model: Application to the Force Control of Piezoelectric Cantilevers,” 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, Dec. 15–17, pp. 4257–4262.
Kharitonov, V. L. , 1978, “ Asymptotic Stability of an Equilibrium Position of a Family of Systems of Linear Differential Equations,” Diff. Uravn., 14, pp. 2086–2088. http://www.apmath.spbu.ru/ru/staff/kharitonov/publ/publ3.pdf
Prado, M. L. , Lordelo, A. D. , and Ferreira, P. A. , 2005, “ Robust Pole Assignment by State Feedback Control Using Interval Analysis,” 16th Triennial World Congress, Prague, Czech Republic, pp. 951–951.
Ordaz, P. , and Poznyak, A. , 2015, “ Kl-Gain Adaptation for Attractive Ellipsoid Method,” IMA J. Math. Control Inf., 32(3), pp. 447–469. [CrossRef]
Ordaz, P. , 2017, “ Nonlinear Robust Output Stabilization for Mechanical Systems Based on Luenberger-like Controller/Observer,” ASME J. Dyn. Syst. Meas. Control, 139(8), p. 084501. [CrossRef]
Haqiri, T. , and Poloni, F. , 2015, “ Methods for Verified Solutions to Continuous-Time Algebraic Riccati Equations,” preprint arXiv: 1509.02015.
Miyajima, S. , 2015, “ Fast Verified Computation for Solutions of Continuous-Time Algebraic Riccati Equations,” Jpn. J. Ind. Appl. Math., 32(2), pp. 529–544. [CrossRef]
Hashemi, B. , and Dehghan, M. , 2012, “ The Interval Lyapunov Matrix Equation: Analytical Results and an Efficient Numerical Technique for Outer Estimation of the United Solution Set,” Math. Comput. Modell., 55(3–4), pp. 622–633. [CrossRef]
Frommer, A. , and Hashemi, B. , 2012, “ Verified Error Bounds for Solutions of Sylvester Matrix Equations,” Linear Algebra Its Appl., 436(2), pp. 405–420. [CrossRef]
Jaulin, L. , and Walter, E. , 1993, “ Set Inversion Via Interval Analysis for Nonlinear Bounded-Error Estimation,” Automatica, 29(4), pp. 1053–1064. [CrossRef]
Jaulin, L. , 2001, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Vol. 1, Springer Science & Business Media, London.
Moore, R. E. , Kearfott, R. B. , and Cloud, M. J. , 2009, Introduction to Interval Analysis, SIAM, Philadelphia, PA.
Deif, A. , 1991, “ The Interval Eigenvalue Problem,” ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Mech., 71(1), pp. 61–64. [CrossRef]
Kolev, L. , and Petrakieva, S. , 2005, “ Assessing the Stability of Linear Time-Invariant Continuous Interval Dynamic Systems,” Autom. Control, IEEE Trans., 50(3), pp. 393–397. [CrossRef]
Hladík, M. , 2013, “ Bounds on Eigenvalues of Real and Complex Interval Matrices,” Appl. Math. Comput., 219(10), pp. 5584–5591.
Mayer, G. , 1994, “ A Unified Approach to Enclosure Methods for Eigenpairs,” ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Mech., 74(2), pp. 115–128. [CrossRef]
Ahn, H.-S. , Moore, K. L. , and Chen, Y. , 2006, “ Monotonic Convergent Iterative Learning Controller Design Based on Interval Model Conversion,” IEEE Trans. Autom. Control, 51(2), pp. 366–371. [CrossRef]
Leng, H. , and He, Z. , 2017, “ Eigenvalue Bounds for Symmetric Matrices With Entries in One Interval,” Appl. Math. Comput., 299, pp. 58–65.
Rohn, J. , 2005, “ A Handbook of Results on Interval Linear Problems,” The Czech Academy of Sciences, Czech Republic, http://uivtx.cs.cas.cz/~rohn/publist/!aahandbook.pdf
Bhattacharyya, S. , Chapellat, H. , and Keel, L. , 1995, Robust Control: The Parametric Approach, Prentice Hall, Upper Saddle River, NJ.
Hussein, M. T. , 2011, “ Assessing 3D Uncertain System Stability by Using MATLAB Convex Hull Functions,” Int. J. Adv. Comput. Sci. Appl., (IJACSA), 2(6), pp. 13–18.
Syrmos, V. L. , Abdallah, C. T. , Dorato, P. , and Grigoriadis, K. , 1997, “ Static Output Feedback a Survey,” Automatica, 33 (2), pp. 125–137. [CrossRef]
Lee, T.-T. , and Lee, T.-T. S.-H. , 1987, “ Root Clustering in Subregions of the Complex Plane,” Int. J. Syst. Sci., 18(1), pp. 117–129. [CrossRef]
Chen, C.-T. , 1970, Introduction to Linear System Theory, Holt, Rinehart, and Winston, New York.
Dorf, R. C. , and Bishop, R. H. , 1998, “ Modern Control Systems,” 13th ed., Pearson, London.
Tymerski, R. , and Rytkonen, F. , 2012, “ Control System Design,” Pearson, London.
Horng, I.-R. , Horng, H.-Y. , and Chou, J.-H. , 1993, “ Eigenvalue Clustering in Subregions of the Complex Plane for Interval Dynamic Systems,” Int. J. Syst. Sci., 24(5), pp. 901–914. [CrossRef]
Gutman, S. , and Jury, E. I. , 1981, “ A General Theory for Matrix Root-Clustering in Subregions of the Complex Plane,” IEEE Trans. Autom. Control, 26(4), pp. 853–863. [CrossRef]
Kailath, T. , 1980, Linear Systems. Prentice Hall Information and System Sciences Series, Prentice Hall, Englewood Cliffs, NJ.
Jaulin, L. , and Desrochers, B. , 2014, “ Introduction to the Algebra of Separators With Application to Path Planning,” Eng. Appl. Artif. Intell., 33, pp. 141–147. [CrossRef]
Lewis, F. L. , Vrabie, D. , and Syrmos, V. L. , 2012, Optimal Control, Wiley, Hoboken, NJ.
Seif, N. , Hussein, S. , and Deif, A. , 1994, “ The Interval Sylvester Equation,” Comput., 52(3), pp. 233–244. [CrossRef]
Rohn, J. , 1989, “ Systems of Linear Interval Equations,” Linear Algebra Appl., 126, pp. 39–78. [CrossRef]
Oettli, W. , 1965, “ On the Solution Set of a Linear System With Inaccurate Coefficients,” J. Soc. Ind. Appl. Math., Ser. B: Numer. Anal., 2(1), pp. 115–118. [CrossRef]
Hassan, R. , Cohanim, B. , De Weck, O. , and Venter, G. , 2005, “ A Comparison of Particle Swarm Optimization and the Genetic Algorithm,” AIAA Paper No. 2005-1987.
Rakotondrabe, M. , 2013, Smart Materials Based Actuators at the Micro/Nano-Scale. Characterization, Control and Applications, Springer-Verlag, New York.
Xie, H. , Rakotondrabe, M. , and Régnier, S. , 2009, “ Characterizing Piezoscanner Hysteresis and Creep Using Optical Levers and a Reference Nanopositioning Stage,” Rev. Sci. Instrum., 80(4), p. 046102. [CrossRef] [PubMed]
Devasia, S. , Eleftheriou, E. , and Moheimani, S. O. R. , 2007, “ A Survey of Control Issues in Nanopositioning,” IEEE Trans. Control Syst. Technol., 15(5), pp. 802–823. [CrossRef]
Agnus, J. , Chaillet, N. , Clévy, C. , Dembélé, S. , Gauthier, M. , Haddab, Y. , Laurent, G. , Lutz, P. , Piat, N. , Rabenorosoa, K. , Rakotondrabe, M. , and Tamadazte, B. , 2013, “ Robotic Microassembly and Micromanipulation at Femto-St,” J. Micro-Bio Rob., 8(2), pp. 91–106. [CrossRef]
Juan Antonio Escareno, M. R. , and Habineza, D. , 2015, “ Backstepping-Based Robust-Adaptive Control of a Nonlinear 2Dof Piezoactuator,” IFAC Control Eng. Pract., 41, pp. 57–71. [CrossRef]
Rakotondrabe, M. , Haddab, Y. , and Lutz, P. , 2009, “ Quadrilateral Modelling and Robust Control of a Nonlinear Piezoelectric Cantilever,” IEEE Trans. Control Syst. Technol., 17(3), pp. 528–539. [CrossRef]
Rakotondrabe, M. , 2014, “ Piezoelectric Systems for Precise and High Dynamic Positioning: Design, Modeling, Estimation and Control,” HDR halititation thesis, Université de Franche-Comté, Besançon, France.
Ljung, L. , 1988, System Identification Toolbox: User's Guide, MathWorks, Inc., Natick, MA.
Premaratne, K. , Jury, E. , and Mansour, M. , 1990, “ Multivariable Canonical Forms for Model Reduction of 2-d Discrete Time Systems,” IEEE Trans. Circuits Syst., 37(4), pp. 488–501. [CrossRef]
Skogestad, S. , 2007, Multivariable Feedback Control: Analysis and Design, Vol. 2, Wiley, Chichester, UK.

Figures

Grahic Jump Location
Fig. 1

Region Ω of desired eigenvalues for the closed-loop

Grahic Jump Location
Fig. 2

Output-feedback with integral compensator

Grahic Jump Location
Fig. 3

General framework for the design of optimal and robust controllers

Grahic Jump Location
Fig. 4

Presentation of the experimental setup

Grahic Jump Location
Fig. 5

Structure and operation of the piezoelectric tube actuator

Grahic Jump Location
Fig. 6

The control design of a MIMO piezoelectric tube actuator using output-feedback with integral compensator

Grahic Jump Location
Fig. 7

Resulting subpaving [Ky] and [Ki]

Grahic Jump Location
Fig. 8

Step response of piezoelectric tube for the closed-loop system (Simulation using matlab)

Grahic Jump Location
Fig. 9

The test of the robustness of the closed-loop system using Monte Carlo techniques

Grahic Jump Location
Fig. 10

Step response of piezoelectric tube for the closed-loop system (experimental test)

Grahic Jump Location
Fig. 11

Open- and closed-loop frequency responses. (a), (b), (c), and (d) for Gxx, Gxy, Gyx, and Gyy, respectively.

Grahic Jump Location
Fig. 12

Deflection response of piezoelectric tube

Grahic Jump Location
Fig. 13

Helix trajectory tracking

Grahic Jump Location
Fig. 14

Step response of piezoelectric tube actuator with different gains values

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In