A data-driven MPC Approach to Lean NOx Trap Regeneration Control

[+] Author and Article Information
Milad Karimshoushtari

Politecnico di Torino, Italy

Carlo Novara

Politecnico di Torino, Italy

1Corresponding author.

ASME doi:10.1115/1.4041354 History: Received June 28, 2017; Revised August 28, 2018


Lean NOx Trap (LNT) is one of the most effective after-treatment technologies used to reduce NOx emissions of diesel engines. One relevant problem in this context is LNT regeneration timing control. This problem is indeed difficult due to the fact that LNTs are highly nonlinear systems, involving complex physical/chemical processes, that are hard to model. In this paper, a novel approach for regeneration timing of LNTs is proposed, allowing us to overcome these issues. This approach, named data-driven model predictive control (D2-MPC), does not require a physical model of the engine/trap system but is based on low-complexity polynomial prediction models, directly identified from data. The regeneration timing is computed through an optimization algorithm, which uses the identified models to predict the LNT behavior. Two D2-MPC strategies are proposed, and tested in a co-simulation study, where the plant is represented by a detailed LNT model, built using the well-known commercial tool AMEsim, and the controller is implemented in Matlab/Simulink.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In