0
Technical Brief

Robust Functional Interval Observer for Multivariable Linear Systems

[+] Author and Article Information
Luc Meyer

ONERA,
University of Paris-Saclay,
Palaiseau 91120, France
e-mail: luc.meyer@onera.fr

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT,AND CONTROL. Manuscript received March 23, 2018; final manuscript received March 26, 2019; published online May 2, 2019. Assoc. Editor: Ming Xin.

J. Dyn. Sys., Meas., Control 141(9), 094502 (May 02, 2019) (7 pages) Paper No: DS-18-1143; doi: 10.1115/1.4043334 History: Received March 23, 2018; Revised March 26, 2019

The study of a continuous-time multivariable linear system may not need the knowledge of the entire internal state vector, but only of a linear function of it. In this case, instead of designing a complete observer, only a functional (also called reduced order) observer is used. In this field of research, this paper focuses on robust functional cooperative interval observers. Such an observer is proposed and its properties (in particular, its convergence) are established. Then, a design procedure is given for practical use. Finally, the theoretical contributions are illustrated in examples.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Luenberger, D. G. , 1964, “ Observing the State of a Linear System,” IEEE Trans. Mil. Electron., 8(2), pp. 74–80. [CrossRef]
Luenberger, D. , 1971, “ An Introduction to Observers,” IEEE Trans. Autom. Control, 16(6), pp. 596–602. [CrossRef]
Trinh, H. , and Fernando, T. , 2011, Functional Observers for Dynamical Systems, Vol. 420, Springer Science & Business Media, Berlin.
Tsui, C.-C. , 1985, “ A New Algorithm for the Design of Multifunctional Observers,” IEEE Trans. Autom. Control, 30(1), pp. 89–93. [CrossRef]
Helmick, R. E. , Nagpal, K. M. , and Sims, C. S. , 1987, “ Reduced-Order Estimation—Part 1: Filtering,” Int. J. Control, 45(6), pp. 1867–1888. [CrossRef]
Helmick, R. E. , Nagpal, K. M. , and Sims, C. S. , 1987, “ Reduced-Order Estimation—Part 2: Smoothing,” Int. J. Control, 45(6), pp. 1889–1898. [CrossRef]
Trinh, H. , and Ha, Q. , 2000, “ Design of Linear Functional Observers for Linear Systems With Unknown Inputs,” Int. J. Syst. Sci., 31(6), pp. 741–749. [CrossRef]
Darouach, M. , 2000, “ Existence and Design of Functional Observers for Linear Systems,” IEEE Trans. Autom. Control, 45(5), pp. 940–943. [CrossRef]
Jaulin, L. , and Walter, E. , 1993, “ Set Inversion Via Interval Analysis for Nonlinear Bounded-Error Estimation,” Automatica, 29(4), pp. 1053–1064. [CrossRef]
Jaulin, L. , Kieffer, M. , Didrit, O. , and Walter, E. , 2001, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, London.
Jaulin, L. , 2002, “ Nonlinear Bounded-Error State Estimation of Continuous Time Systems,” Automatica, 38(6), pp. 1079–1082. [CrossRef]
Maksarov, D. , and Norton, J. , 1996, “ State Bounding With Ellipsoidal Set Description of the Uncertainty,” Int. J. Control, 65(5), pp. 847–866. [CrossRef]
Liu, Y. , Zhao, Y. , and Wu, F. , 2016, “ Ellipsoidal State-Bounding-Based Set-Membership Estimation for Linear System With Unknown-But-Bounded Disturbances,” IET Control Theory Appl., 10(4), pp. 431–442. [CrossRef]
Alamo, T. , Bravo, J. M. , and Camacho, E. F. , 2005, “ Guaranteed State Estimation by Zonotopes,” Automatica, 41(6), pp. 1035–1043. [CrossRef]
Wang, Y. , Wang, Z. , Puig, V. , and Cembrano, G. , 2018, “ Zonotopic Set-Membership State Estimation for Discrete-Time Descriptor LPV Systems,” IEEE Trans. Autom. Control (epub).
Efimov, D. , Perruquetti, W. , Raissi, T. , and Zolghadri, A. , 2013, “ On Interval Observer Design for Time-Invariant Discrete-Time Systems,” European Control Conference 2013, Zurich, Switzerland, July, pp. 2651–2656.
Efimov, D. , Perruquetti, W. , Raissi, T. , and Zolghadri, A. , 2013, “ Interval Observers for Time-Varying Discrete-Time Systems,” IEEE Trans. Autom. Control, 58(12), pp. 3218–3224.
Mazenc, F. , and Bernard, O. , 2010, “ Interval Observers for Linear Systems With Additive Disturbances,” IFAC Proc. Vol., 43(14), pp. 30–35. [CrossRef]
Meyer, L. , Ichalal, D. , and Vigneron, V. , 2017, “ Interval Observer for Lpv Systems With Unknown Inputs,” IET Control Theory Appl., 12(5), pp. 649–660.
Moisan, M. , and Bernard, O. , 2010, “ Robust Interval Observers for Global Lipschitz Uncertain Chaotic Systems,” Syst. Control Lett., 59(11), pp. 687–694. [CrossRef]
Meyer, L. , Ichalal, D. , and Vigneron, V. , 2018, “ Interval Observer for Nonlinear Lipschitz Systems With Unknown Inputs,” Annual American Control Conference (ACC), Milwaukee, WI, June 27–29, pp. 5962–5967.
Meyer, L. , Ichalal, D. , and Vigneron, V. , 2018, “ Interval Observer for Bilinear Systems With Unknown Inputs,” Annual American Control Conference (ACC), Milwaukee, WI, June 27–29, pp. 5957–5961.
Efimov, D. , Raissi, T. , Stanislav, C. , and Zolghadri, A. , 2013, “ Interval State Observer for Nonlinear Time Varying Systems,” Automatica, 49(1), pp. 200–205. [CrossRef]
Smith, H. , 1995, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (Mathematical Surveys and Monographs), Vol. 41, American Mathematical Society, Providence, RI.
Gouze, J. , Rapaport, A. , and Hadj-Sadok, M. , 2000, “ Interval Observers for Uncertain Biological Systems,” Ecol. Modell., 133(1–2), pp. 45–56. [CrossRef]
Efimov, D. , Fridman, L. , Raissi, T. , Zolghadri, A. , and Seydou, R. , 2012, “ Interval Estimation for LPV Systems Applying High Order Sliding Mode Techniques,” Automatica, 48(9), pp. 2365–2371. [CrossRef]
Raïssi, T. , Efimov, D. , and Zolghadri, A. , 2012, “ Interval State Estimation for a Class of Nonlinear Systems,” IEEE Trans. Autom. Control, 57(1), pp. 260–265. [CrossRef]
Mazenc, F. , and Bernard, O. , 2011, “ Interval Observers for Linear Time-Invariant Systems With Disturbances,” Automatica, 47(1), pp. 140–147. [CrossRef]
Chebotarev, S. , Efimov, D. , Raïssi, T. , and Zolghadri, A. , 2015, “ Interval Observers for Continuous-Time LPV Systems With l1/l2 Performance,” Automatica, 58, pp. 82–89. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Example 1. Interval estimation for z(t).

Grahic Jump Location
Fig. 2

Example 2. Interval estimation for: z1(t) and z2(t).

Grahic Jump Location
Fig. 3

Example 2. Interval estimation for: z1(t) and z2(t).

Grahic Jump Location
Fig. 4

Example 3. Interval estimation for z(t).

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In