Ho,
Β.
, and
Kálmán,
R. E.
, 1966, “
Effective Construction of Linear State-Variable Models From Input/Output Functions,” Automatisierungstechnik,
14(1–12), pp. 545–548.

Silverman,
L.
, 1971, “
Realization of Linear Dynamical Systems,” IEEE Trans. Autom. Control,
16(6), pp. 554–567.

[CrossRef]
Dickinson,
B.
,
Morf,
M.
, and
Kailath,
T.
, 1974, “
A Minimal Realization Algorithm for Matrix Sequences,” IEEE Trans. Autom. Control,
19(1), pp. 31–38.

[CrossRef]
Akaike,
H.
, 1974, “
Stochastic Theory of Minimal Realization,” IEEE Trans. Autom. Control,
19(6), pp. 667–674.

[CrossRef]
Moore,
B. C.
, 1979, “
Singular Value Analysis of Linear Systems,” IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, San Diego, CA, Jan. 10–12, pp. 66–73.

Kung,
S.-Y.
, 1978, “
A New Identification and Model Reduction Algorithm Via Singular Value Decomposition,” 12th Asilomar Conference on Circuits, Systems, and Computers, Pacific Grove, CA, Nov. 6–8, pp. 705–714.

Giannakis,
G. B.
, and
Serpedin,
E.
, 1998, “
Blind Identification of ARMA Channels With Periodically Modulated Inputs,” IEEE Trans. Signal Process.,
46(11), pp. 3099–3104.

[CrossRef]
Jafari,
K.
, 2017, “
A Parameter Estimation Approach Based on Binary Measurements Using Maximum Likelihood Analysis-Application to MEMS,” Int. J. Control, Autom. Syst.,
15(2), pp. 716–721.

[CrossRef]
Tong,
L.
, and
Perreau,
S.
, 1998, “
Multichannel Blind Identification: From Subspace to Maximum Likelihood Methods,” Proc. IEEE,
86(10), pp. 1951–1968.

[CrossRef]
Tsoi,
A. C.
, and
Ma,
L.
, 2003, “
Blind Deconvolution of Dynamical Systems Using a Balanced Parameterized State Space Approach,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'03), Hong Kong, China, Apr. 6–10, p. IV–309.

Van Overschee,
P.
, and
De Moor,
B.
, 1993, “
Subspace Algorithms for the Stochastic Identification Problem,” Automatica,
29(3), pp. 649–660.

[CrossRef]
Wang,
D.-Q.
,
Zhang,
Z.
, and
Yuan,
J.-Y.
, 2017, “
Maximum Likelihood Estimation Method for Dual-Rate Hammerstein Systems,” Int. J. Control, Autom. Syst.,
15(2), pp. 698–705.

[CrossRef]
Wang,
L.
,
Cheng,
P.
, and
Wang,
Y.
, 2011, “
Frequency Domain Subspace Identification of Commensurate Fractional Order Input Time Delay Systems,” Int. J. Control, Autom. Syst.,
9(2), pp. 310–316.

[CrossRef]
Yu,
C.
, and
Verhaegen,
M.
, 2016, “
Blind Multivariable ARMA Subspace Identification,” Automatica,
66, pp. 3–14.

[CrossRef]
Zhang,
L.-Q.
,
Cichocki,
A.
, and
Amari,
S.
, 2000, “
Kalman Filter and State-Space Approach to Blind Deconvolution,” Neural Networks for Signal Processing X, IEEE Signal Processing Society Workshop, Sydney, Australia, Dec. 11–13, pp. 425–434.

Phan,
M. Q.
,
Vicario,
F.
,
Longman,
R. W.
, and
Betti,
R.
, 2017, “
State-Space Model and Kalman Filter Gain Identification by a Kalman Filter of a Kalman Filter,” ASME J. Dyn. Syst., Meas., Control,
140(3), p. 030902.

[CrossRef]
Peeters,
B.
, and
De Roeck,
G.
, 2001, “
Stochastic System Identification for Operational Modal Analysis: A Review,” ASME J. Dyn. Syst., Meas., Control,
123(4), pp. 659–667.

[CrossRef]
Peeters,
B.
, and
De Roeck,
G.
, 1999, “
Reference-Based Stochastic Subspace Identification for Output-Only Modal Analysis,” Mech. Syst. Signal Process.,
13(6), pp. 855–878.

[CrossRef]
Reynders,
E.
,
Pintelon,
R.
, and
De Roeck,
G.
, 2008, “
Uncertainty Bounds on Modal Parameters Obtained From Stochastic Subspace Identification,” Mech. Syst. Signal Process.,
22(4), pp. 948–969.

[CrossRef]
Batel,
M.
, 2002, “
Operational Modal Analysis—Another Way of Doing Modal Testing,” J. Sound Vib.,
36(8), pp. 22–27.

Basseville,
M. L.
,
Benveniste,
A.
,
Goursat,
M.
,
Hermans,
L.
,
Mevel,
L.
, and
Van der Auweraer,
H.
, 2001, “
Output-Only Subspace-Based Structural Identification: From Theory to Industrial Testing Practice,” ASME J. Dyn. Syst., Meas., Control,
123(4), pp. 668–676.

[CrossRef]
Hautus,
M. L.
, 1983, “
Strong Detectability and Observers,” Linear Algebra Appl.,
50, pp. 353–368.

[CrossRef]
Kratz,
W.
, 1995, “
Characterization of Strong Observability and Construction of an Observer,” Linear Algebra Appl.,
221, pp. 31–40.

[CrossRef]
Kurek,
J.
, 1988, “
Strong Observability and Strong Reconstructibility of a System Described by the 2-D Roeser Model,” Int. J. Control,
47(2), pp. 633–641.

[CrossRef]
Moreno,
J. A.
,
Rocha-Cózatl,
E.
, and
Wouwer,
A. V.
, 2014, “
A Dynamical Interpretation of Strong Observability and Detectability Concepts for Nonlinear Systems With Unknown Inputs: Application to Biochemical Processes,” Bioprocess Biosyst. Eng.,
37(1), pp. 37–49.

[CrossRef] [PubMed]
Liu,
C.
, and
Li,
C.
, 2013, “
Reachability and Observability of Switched Linear Systems With Continuous-Time and Discrete-Time Subsystems,” Int. J. Control, Autom. Syst.,
11(1), pp. 200–205.

[CrossRef]
Bauer,
D.
, 2001, “
Order Estimation for Subspace Methods,” Automatica,
37(10), pp. 1561–1573.

[CrossRef]
Chiuso,
A.
, and
Picci,
G.
, 2004, “
On the Ill-Conditioning of Subspace Identification With Inputs,” Automatica,
40(4), pp. 575–589.

[CrossRef]
De Moor,
B.
,
Vandewalle,
J.
,
Moonen,
M.
,
Vandenberghe,
L.
, and
Van Mieghem,
P.
, 1988, “
A Geometrical Strategy for the Identification of State Space Models of Linear Multivariable Systems With Singular Value Decomposition,” IFAC Proc. Vol.,
21(9), pp. 493–497.

[CrossRef]
Gustafsson,
T.
, 2001, “
Subspace Identification Using Instrumental Variable Techniques,” Automatica,
37(12), pp. 2005–2010.

[CrossRef]
Katayama,
T.
, and
Tanaka,
H.
, 2007, “
An Approach to Closed-Loop Subspace Identification by Orthogonal Decomposition,” Automatica,
43(9), pp. 1623–1630.

[CrossRef]
Ljung,
L.
, and
McKelvey,
T.
, 1996, “
Subspace Identification From Closed Loop Data,” Signal Process.,
52(2), pp. 209–215.

[CrossRef]
Miller,
D. N.
, and
De Callafon,
R. A.
, 2013, “
Subspace Identification With Eigenvalue Constraints,” Automatica,
49(8), pp. 2468–2473.

[CrossRef]
Moonen,
M.
, and
Ramos,
J.
, 1993, “
A Subspace Algorithm for Balanced State Space System Identification,” IEEE Trans. Autom. Control,
38(11), pp. 1727–1729.

[CrossRef]
Peternell,
K.
,
Scherrer,
W.
, and
Deistler,
M.
, 1996, “
Statistical Analysis of Novel Subspace Identification Methods,” Signal Process.,
52(2), pp. 161–177.

[CrossRef]
Swindlehurst,
A.
,
Roy,
R.
,
Ottersten,
B.
, and
Kailath,
T.
, 1992, “
System Identification Via Weighted Subspace Fitting,” American Control Conference (ACC), Chicago, IL, June 24–26, pp. 2158–2163.

Verhaegen,
M.
, and
Dewilde,
P.
, 1992, “
Subspace Model Identification Part 1. The Output-Error State-Space Model Identification Class of Algorithms,” Int. J. Control,
56(5), pp. 1187–1210.

[CrossRef]
Viberg,
M.
, 1995, “
Subspace-Based Methods for the Identification of Linear Time-Invariant Systems,” Automatica,
31(12), pp. 1835–1851.

[CrossRef]
Zhang,
S.
,
Liu,
T.
,
Hou,
J.
, and
Ni,
X.
, 2017, “
LQ Decomposition Based Subspace Identification Under Deterministic Type Disturbance,” Syst. Sci. Control Eng.,
5(1), pp. 243–251.

[CrossRef]
Arun,
K.
, and
Kung,
S.
, 1990, “
Balanced Approximation of Stochastic Systems,” SIAM J. Matrix Anal. Appl.,
11(1), pp. 42–68.

[CrossRef]
Tanaka,
H.
,
ALMutawa,
J.
, and
Katayama,
T.
, 2005, “
Stochastic Subspace Identification of Linear Systems With Observation Outliers,” 44th IEEE Conference on Decision and Control European Control Conference (CDC-ECC'05), Seville, Spain, June 25–28, pp. 7090–7095.

Van Overschee,
P.
, and
De Moor,
B.
, 1996, Subspace Identification for Linear Systems: Theory—Implementation—Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands.

Van Overschee,
P.
, and
De Moor,
B.
, 1994, “
N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems,” Automatica,
30(1), pp. 75–93.

[CrossRef]
Lipschutz,
S.
, and
Lipson,
M.
, 2008, Schaum's Outline of Linear Algebra, 4th ed.,
McGraw-Hill Professional, New York.

Piziak,
R.
, and
Odell,
P. L.
, 2007, Matrix Theory: From Generalized Inverses to Jordan Form,
CRC Press, Boca Raton, FL.

Puntanen,
S.
,
Styan,
G. P.
, and
Isotalo,
J.
, 2011, Matrix Tricks for Linear Statistical Models: Our Personal Top Twenty,
Springer, Berlin.

Ljung,
L.
, 1999, System Identification. Theory for the User, 2nd ed.,
Prentice Hall, Upper Saddle River, NJ.

Verhaegen,
M.
, 1994, “
Identification of the Deterministic Part of MIMO State Space Models Given in Innovations Form From Input-Output Data,” Automatica,
30(1), pp. 61–74.

[CrossRef]