0
Research Papers

Maximum Power Tracking and Current Control for Solar Photovoltaic System Applications, Hybrid Dynamical System Approach

[+] Author and Article Information
Ali Dali

École nationale polytechnique d'Alger,
Avenue Hacen Badi El harrach,
Alger 16200, Algérie;
Centre de Développement des Energies
Renouvelables,
CDER BP 62 Route de l'Observatoire, Bouzaréah,
Alger 16340, Algérie
e-mails: ali.dali.dz@gmail.com;
a.dali@cder.dz

Said Diaf

Centre de Développement des Energies
Renouvelables,
CDER BP 62 Route de l'Observatoire,
Bouzaréah 16340, Algérie
e-mail: s.diaf@cder.dz

Mohamed Tadjine

École nationale polytechnique d'Alger,
Avenue Hacen Badi El harrach,
Alger 16200, Algérie
e-mail: mohamed.tadjine@mail.enp.edu.dz

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT,AND CONTROL. Manuscript received April 27, 2017; final manuscript received April 4, 2019; published online May 8, 2019. Editor: Joseph Beaman.

J. Dyn. Sys., Meas., Control 141(9), 091017 (May 08, 2019) (8 pages) Paper No: DS-17-1224; doi: 10.1115/1.4043556 History: Received April 27, 2017; Revised April 04, 2019

The problem of a DC-DC buck converter control to extract the maximum power from a photovoltaic (PV) system is considered in this paper. A controller is proposed based on the hybrid dynamical system approach dealing with both voltage and current control. This approach allows the system to track a desired voltage using the maximum power point tracking (MPPT) algorithm while keeping the output current at a moderate level. The stability of the closed loop of the full system is demonstrated by means of Lyapunov theory. The simulation utilizes realistic PV array parameters obtained using particle swarm optimization (PSO) identification algorithm. Experimental results are also presented showing the good performance of the proposed controller.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Haque, A. , 2014, “ Maximum Power Point Tracking (MPPT) Scheme for Solar Photovoltaic System,” Energy Technol. Policy, 1(1), pp. 115–122. [CrossRef]
Guerrero, J. M. , Vasquez, J. C. , Matas, J. , Vicuna, L. G. D. , and Castilla, M. , 2011, “ Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization,” IEEE Trans. Ind. Electron., 58(1), pp. 158–172. [CrossRef]
Guerrero, J. M. , Vasquez, J. C. , Matas, J. , Castilla, M. , and Vicuna, L. G. D. , 2009, “ Control Strategy for Flexible Microgrid Based on Parallel Line-Interactive UPS Systems,” IEEE Trans. Ind. Electron., 56(3), pp. 726–736. [CrossRef]
Singh, S. , Gautam, A. R. , and Fulwani, D. , 2017, “ Constant Power Loads and Their Effects in DC Distributed Power Systems: A Review,” Renewable Sustainable Energy Rev., 72, pp. 407–421. [CrossRef]
Planas, E. , Andreu, J. , Gárate, J. I. , Martínez de Alegría, I. , and Ibarra, E. , 2015, “ AC and DC Technology in Microgrids: A Review,” Renewable Sustainable Energy Rev., 43, pp. 726–749. [CrossRef]
Mohamed, A. A. , Elsayed, A. T. , Youssef, T. A. , and Mohammed, O. A. , 2017, “ Hierarchical Control for DC Microgrid Clusters With High Penetration of Distributed Energy Resources,” Electr. Power Syst. Res., 148, pp. 210–219. [CrossRef]
Hejri, M. , and Giua, A. , 2011, “ Hybrid Modeling and Control of Switching DC-DC Converters Via MLD Systems,” IEEE Conference on Automation Science and Engineering (CASE), Trieste, Italy, Aug. 24–27, pp. 714–719.
Abouobaida, H. , Cherkaoui, M. , and Ouassaid, M. , 2011, “ Robust Maximum Power Point Tracking for Photovoltaic Cells: A Backstepping Mode Control Approach,” International Conference on Multimedia Computing and Systems (ICMCS), Ouarzazate, Morocco, Apr. 7–9, pp. 1–4.
Vafamand, N. , and Rakhshan, M. , 2017, “ Dynamic Model-Based Fuzzy Controller for Maximum Power Point Tracking of Photovoltaic Systems: A Linear Matrix Inequality Approach,” ASME J. Dyn. Syst., Meas., Control, 139(5), p. 051010. [CrossRef]
López, J. , Seleme , S. I., Jr. , Donoso, P. F. , Morais, L. M. F. , Cortizo, P. C. , and Severo, M. A. , 2016, “ Digital Control Strategy for a Buck Converter Operating as a Battery Charger for Stand-Alone Photovoltaic Systems,” Sol. Energy, 140, pp. 171–187. [CrossRef]
Haddad, W. M. , Nersesov, S. G. , Hui, Q. , and Ghasemi, M. , 2014, “ Formation Control Protocols for Nonlinear Dynamical Systems Via Hybrid Stabilization of Sets,” ASME J. Dyn. Syst., Meas., Control, 136(5), p. 051020. [CrossRef]
Iyasere, E. , Tatlicioglu, E. , and Dawson, D. M. , 2010, “ Backstepping PWM Control for Maximum Power Tracking in Photovoltaic Array Systems,” American Control Conference (ACC), Baltimore, MD, June 30–July 2, pp. 3561–3565.
Di Piazza, M. C. , and Vitale, G. , 2013, Photovoltaic Sources: Modeling and Emulation, Springer-Verlag, London.
Salimi, M. , Soltani, J. , Markadeh, G. A. , and Abjadi, N. R. , 2013, “ Adaptive Nonlinear Control of the DC-DC Buck Converters Operating in CCM and DCM,” Eur. Trans. Electr. Power, 23, pp. 1536–1547.
Taghvaee, M. H. , Radzi, M. A. M. , Moosavain, S. M. , Hizam, H. , and Hamiruce Marhaban, M. , 2013, “ A Current and Future Study on Non-Isolated DC–DC Converters for Photovoltaic Applications,” Renewable Sustainable Energy Rev., 17, pp. 216–227. [CrossRef]
Villalva, M. G. , and Ruppert, E. F. , 2008, “ Input-Controlled Buck Converter for Photovoltaic Applications: Modeling and Design,” Fourth IET Conference on Power Electronics, Machines and Drives (PEMD), York, UK, Apr. 2–4, pp. 505–509.
Mouhadjer, S. , Chermitti, A. , and Neçaibia, A. , 2012, “ Comprehensive and Field Study to Design a Buck Converter for Photovoltaic Systems,” Revue Des Energies Renouvelables, 15(2), pp. 321–330.
Babaei, E. , Mahmoodieh, M. E. S. , and Sabah, M. , 2011, “ Investigating Buck DC-DC Converter Operation in Different Operational Modes and Obtaining the Minimum Output Voltage Ripple Considering Filter Size,” J. Power Electron., 11(6), pp. 793–800. [CrossRef]
Schaft, A. V D. , and Schumacher, H. , 2000, An Introduction to Hybrid Dynamical Systems, Springer-Verlag, London.
Esram, T. , and Chapman, P. L. , 2007, “ Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. Energy Convers., 22(2), pp. 439–449. [CrossRef]
Gehan, O. , Pigeon, E. , Menard, T. , Pouliquen, M. , Gualous, H. , Slamani, Y. , and Tala-Ighil, B. , 2016, “ A Nonlinear State Feedback for DC/DC Boost Converters,” ASME J. Dyn. Syst., Meas., Control, 139(1), p. 011010. [CrossRef]
Loukriz, A. , Haddadi, M. , and Messalti, S. , 2016, “ Simulation and Experimental Design of a New Advanced Variable Step Size Incremental Conductance MPPT Algorithm for PV Systems,” ISA Trans., 62, pp. 30–38. [CrossRef] [PubMed]
Mary, S. S. , Kumar, S. S. , Poluru, S. P. , and Reddy, M. J. B. , 2015, “A Dual DC Output Power Supply for a Stand-Alone Photovoltaic System,” Electr. Power Compon. Syst., 43(8–10), pp. 939–950. [CrossRef]
Lunze, J. , and Lamnabhi-Lagarrigue, F. , 2009, Handbook of Hybrid Systems Control: Theory, Tools, Applications, Cambridge University Press, Cambridge, UK.
Liberzon, D. , 2003, Switching in Systems and Control, Birkhäuser, Basel, Switzerland.
Dali, A. , Bouharchouche, A. , and Diaf, S. , 2015, “ Parameter Identification of Photovoltaic Cell/Module Using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO),” Third International Conference on Control, Engineering & Information Technology (CEIT), Tlemcen, Algeria, May 25–27, pp. 1–6.

Figures

Grahic Jump Location
Fig. 1

Typical example of low voltage DC microgrid

Grahic Jump Location
Fig. 2

The two diodes model of a PV cell

Grahic Jump Location
Fig. 3

DC-DC buck converter

Grahic Jump Location
Fig. 4

Flowchart of INC algorithm

Grahic Jump Location
Fig. 5

The hybrid automaton

Grahic Jump Location
Fig. 6

I-V curve for both: real and identified PV array

Grahic Jump Location
Fig. 7

Simulation results: ((a) and (b)) first test ((c) and (d)) second test ((e) and (f)) third test

Grahic Jump Location
Fig. 8

The experimental setup

Grahic Jump Location
Fig. 9

Experimental results of the proposed approach: ((a) and (b)) voltage control ((c) and (d)) current control ((e) and (f)) hybrid control with MPPT tracking

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In