0
Research Papers

Observer-Based Nonlinear Robust Control of Floating Container Cranes Subject to Output Hysteresis

[+] Author and Article Information
Le Anh Tuan

Department of Automotive Engineering,
Vietnam Maritime University,
Hai Phong 04717, Vietnam
e-mail: tuanla.ck@vimaru.edu.vn

Quang Ha

Faculty of Engineering and Information
Technology,
University of Technology,
Sydney, NSW 2007, Australia
e-mail: Quang.Ha@uts.edu.au

Pham Van Trieu

Maritime Research Institute,
Vietnam Maritime University,
Hai Phong 04717, Vietnam
e-mail: phamvantrieu@vimaru.edu.vn

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT,AND CONTROL. Manuscript received November 28, 2018; final manuscript received June 4, 2019; published online June 27, 2019. Assoc. Editor: Fen Wu.

J. Dyn. Sys., Meas., Control 141(11), 111002 (Jun 27, 2019) (11 pages) Paper No: DS-18-1535; doi: 10.1115/1.4043984 History: Received November 28, 2018; Revised June 04, 2019

A container crane mounted on a pontoon is utilized to transfer containers to smaller ships when a large container ship cannot reach the shallow water port. The shipboard container is considered as an underactuated system having complicated kinematic constraints and hysteretic nonlinearities, with only two actuators to conduct simultaneous tasks: tracking the trolley to destination, lifting the container to the desired cable length, and suppressing the axial container oscillations and container swing. Parameter variations, wave-induced motions of the ship, wind disturbance, and nonlinearities remain challenges for control of floating container cranes. To deal with these problems, this study presents the design of two nonlinear robust controllers, taking into account the influence of the output hysteresis, and using velocity feedback from a state observer. Control performance of the proposed controllers is verified in both simulation and experiments. Together with consistently stabilizing outputs, the proposed control approach well rejects hysteresis and disturbance.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sun, N. , Fang, Y. , Chen, H. , Fu, Y. , and Lu, B. , 2018, “ Nonlinear Stabilizing Control for Ship-Mounted Cranes With Ship Roll and Heave Movements: Design, Analysis, and Experiments,” IEEE Trans. Syst., Man, Cybern.: Syst., 48(10), pp. 1781–1793. [CrossRef]
Sun, N. , Yang, T. , Chen, H. , Fang, Y. , and Qian, Y. , 2019, “ Adaptive Anti-Swing and Positioning Control for 4-DOF Rotary Cranes Subject to Uncertain/Unknown Parameters With Hardware Experiments,” IEEE Trans. Syst., Man, Cybern.: Syst., 49(7), pp. 1309–1321. [CrossRef]
Cha, J. H. , Roh, M.-I. , and Lee, K. Y. , 2010, “ Dynamic Response Simulation of a Heavy Cargo Suspended by a Floating Crane Based on Multibody System Dynamics,” Ocean Eng., 37(14–15), pp. 1273–1291. [CrossRef]
Le, T. A. , Dang, V. H. , Ko, D. H. , An, T. N. , and Lee, S.-G. , 2013, “ Nonlinear Controls of a Rotating Tower Crane in Conjunction With Trolley Motion,” J. Syst. Control Eng., 227(5), pp. 451–460.
Tuan, L. A. , and Lee, S.-G. , 2017, “ 3D Cooperative Control of Tower Cranes Using Robust Adaptive Techniques,” J. Franklin Inst., 354(18), pp. 8333–8357. [CrossRef]
Tuan, L. A. , and Lee, S.-G. , 2018, “ Modelling and Advanced Sliding Mode Controls of Crawler Cranes Considering Wire Ropes Elasticity and Complicated Operation,” Mech. Syst. Signal Process., 103, pp. 250–263. [CrossRef]
Sun, N. , Fang, Y. , and Chen, H. , 2016, “ A Continuous Robust Antiswing Tracking Control Scheme for Underactuated Crane Systems With Experimental Verification,” ASME J. Dyn. Syst., Meas., Control, 138(4), p. 041002. [CrossRef]
Zhou, J. , Zhang, K. , and Hu, G. , 2017, “ Wave-Based Control of a Crane System With Complex Loads,” ASME J. Dyn. Syst., Meas., Control, 139(8), p. 081016. [CrossRef]
Vázquez, C. , Fridman, L. , Collado, J. , and Castillo, I. , 2015, “ Second-Order Sliding Mode Control of a Perturbed-Crane,” ASME J. Dyn. Syst., Meas., Control, 137(8), p. 081010. [CrossRef]
Sun, N. , Wu, Y. , Fang, Y. , and Chen, H. , 2018, “ Nonlinear Antiswing Control for Crane Systems With Double-Pendulum Swing Effects and Uncertain Parameters: Design and Experiments,” IEEE Trans. Autom. Sci. Eng., 15(3), pp. 1413–1422. [CrossRef]
Sun, N. , Yang, T. , Fang, Y. , Wu, Y. , and Chen, H. , 2019, “ Transportation Control of Double-Pendulum Cranes With a Nonlinear Quasi-PID Scheme: Design and Experiments,” IEEE Trans. Syst., Man, Cybern.: Syst., 49(7), pp. 1408–1418. [CrossRef]
Tuan, L. A. , Cuong, H. M. , Trieu, P. V. , Nho, L. C. , Thuan, V. D. , and Anh, L. V. , 2018, “ Adaptive Neural Network Sliding Mode Control of Shipboard Container Cranes Considering Actuator Backlash,” Mech. Syst. Signal Process., 112, pp. 233–250. [CrossRef]
Singhose, W. , Kim, D. , and Kenison, M. , 2008, “ Input Shaping Control of Double-Pendulum Bridge Crane Oscillations,” ASME J. Dyn. Syst., Meas., Control, 130(3), p. 034504. [CrossRef]
Masoud, Z. N. , 2007, “ Oscillation Control of Quay-Side Container Cranes Using Cable-Length Manipulation,” ASME J. Dyn. Syst., Meas., Control, 129(2), pp. 224–228. [CrossRef]
Masoud, Z. N. , and Alhazza, K. A. , 2013, “ Frequency-Modulation Input Shaping Control of Double-Pendulum Overhead Cranes,” ASME J. Dyn. Syst., Meas., Control, 136(2), p. 021005. [CrossRef]
Garcia, A. , Singhose, W. , and Ferri, A. , 2017, “ Three-Dimensional Dynamic Modeling and Control of Off-Centered Bridge Crane Lifts,” ASME J. Dyn. Syst., Meas., Control, 139(4), p. 041005. [CrossRef]
Kreuzer, E. , Pick, M.-A. , Rapp, C. , and Theis, J. , 2014, “ Unscented Kalman Filter for Real-Time Load Swing Estimation of Container Cranes Using Rope Forces,” ASME J. Dyn. Syst., Meas., Control, 136(4), p. 041009. [CrossRef]
Lin, T.-C. , Lin, Y.-C. , Zirkohi, M. M. , and Huang, H.-C. , 2016, “ Direct Adaptive Fuzzy Moving Sliding Mode Proportional Integral Tracking Control of a Three-Dimensional Overhead Crane,” ASME J. Dyn. Syst., Meas., Control, 138(10), p. 101001. [CrossRef]
Pedersen, H. C. , Andersen, T. O. , and Nielsen, B. K. , 2015, “ Comparison of Methods for Modeling a Hydraulic Loader Crane With Flexible Translational Links,” ASME J. Dyn. Syst., Meas., Control, 137(10), p. 101012. [CrossRef]
Schaper, U. , Sawodny, O. , Zeitz, M. , and Schneider, K. , 2014, “ Load Position Estimation for Crane Anti-Sway Control Systems,” ASME J. Dyn. Syst., Meas., Control, 136(3), p. 031013. [CrossRef]
Masoud, Z. N. , and Nayfeh, A. H. , 2003, “ Sway Reduction on Container Cranes Using Delayed Feedback Controller,” Nonlinear Dyn., 34(3/4), pp. 347–358. [CrossRef]
Nayfeh, N. A. , and Baumann, W. T. , 2008, “ Nonlinear Analysis of Time-Delay Position Feedback Control of Container Cranes,” Nonlinear Dyn., 53(1–2), pp. 75–88. [CrossRef]
Erneux, T. , and Nagy, T. K. , 2007, “ Nonlinear Stability of a Delayed Feedback Controlled Container Crane,” J. Vib. Control, 13(5), pp. 603–616. [CrossRef]
Messineo, S. , and Serrani, A. , 2009, “ Offshore Crane Control Based on Adaptive External Models,” Automatica, 45(11), pp. 2546–2556. [CrossRef]
Ngo, Q. H. , and Hong, K.-S. , 2012, “ Dynamics of the Container Crane on a Mobile Harbor,” Ocean Eng., 53, pp. 16–24. [CrossRef]
Ngo, Q. H. , and Hong, K.-S. , 2012, “ Sliding-Mode Antisway Control of an Offshore Container Crane,” IEEE/ASME Trans. Mechatronics, 17(2), pp. 201–209. [CrossRef]
Kim, D. , and Park, Y. , 2016, “ Tracking Control in x-y Plane of an Offshore Container Crane,” J. Vib. Control, 23(3), pp. 469–483.
Tuan, L. A. , Lee, S.-G. , Nho, L. C. , and Cuong, H. M. , 2015, “ Robust Controls for Ship-Mounted Container Cranes With Viscoelastic Foundation and Flexible Hoisting Cable,” J. Syst. Control Eng., 229(7), pp. 662–674.
Tuan, L. A. , Cuong, H. M. , Lee, S.-G. , Nho, L. C. , and Moon, K. , 2016, “ Nonlinear Feedback Control of Container Crane Mounted on Elastic Foundation With Flexibility of Suspended Cable,” J. Vib. Control, 22(13), pp. 3067–3078. [CrossRef]
Raja Ismail, R. M. T. , That, N. D. , and Ha, Q. P. , 2015, “ Modelling and Robust Trajectory Following for Offshore Container Crane Systems,” Autom. Constr., 59, pp. 179–187. [CrossRef]
Ngo, Q. H. , Nguyen, N. P. , Nguyen, C. N. , Tran, T. H. , and Ha, Q. P. , 2017, “ Fuzzy Sliding Mode Control of an Offshore Container Crane,” Ocean Eng., 140, pp. 125–134. [CrossRef]
Phat, V. N. , and Ha, Q. P. , 2009, “ H Control and Exponential Stability of Nonlinear Nonautonomous Systems With Time-Varying Delay,” J. Optim. Theory Appl., 142(3), pp. 603–618. [CrossRef]
Sun, Y. , Xu, J. , Qiang, H. , and Lin, G. , 2019, “ Adaptive Neural-Fuzzy Robust Position Control Scheme for Maglev Train Systems With Experimental Verification,” IEEE Trans. Ind. Electron. (epub).
Sun, Y. , Xu, J. , Chen, C. , and Lin, G. , 2019, “ Fuzzy H∞ Robust Control for Magnetic Levitation System of Maglev Vehicles Based on T-S Fuzzy Model: Design and Experiments,” J. Intell. Fuzzy Syst., 36(2), pp. 911–922. [CrossRef]
Sun, Y. , Xu, J. , Qiang, H. , Chen , and Lin, G. , 2019, “ Adaptive Sliding Mode Control of Maglev System Based on RBF Neural Network Minimum Parameter Learning Method,” Measurement, 141, pp. 217–226. [CrossRef]
Omar, H. M. , and Nayfeh, A. H. , 2005, “ Gantry Cranes Gain Scheduling Feedback Control With Friction Compensation,” J. Sound Vib., 281(1–2), pp. 1–20. [CrossRef]
Chang, C.-Y. , Hsu, K.-C. , Chiang, K.-H. , and Huang, G.-E. , 2008, “ Modified Fuzzy Variable Structure Control Method to the Crane System With Control Deadzone Problem,” J. Vib. Control, 14(7), pp. 953–969. [CrossRef]
Zhao, Y. , and Gao, H. , 2012, “ Fuzzy-Model-Based Control of an Overhead Crane With Input Delay and Actuator Saturation,” IEEE Trans. Fuzzy Syst., 20(1), pp. 181–186. [CrossRef]
Sun, N. , Fang, Y. , and Zhang, X. , 2013, “ Energy Coupling Output Feedback Control of 4-DOF Underactuated Cranes With Saturated Inputs,” Automatica, 49(5), pp. 1318–1325. [CrossRef]
Singh, A. M. , and Ha, Q. P. , 2019, “ Fast Terminal Sliding Control Application for Second-Order Underactuated Systems,” Int. J. Control Autom. Syst. (in press).
Sun, Y. , Xu, J. , Qiang, H. , Wang, W. , and Lin, G. , 2019, “ Hopf Bifurcation Analysis of Maglev Vehicle–Guideway Interaction Vibration System and Stability Control Based on Fuzzy Adaptive Theory,” Comput. Ind., 108, pp. 197–209. [CrossRef]
Kwok, N. M. , Ha, Q. P. , Nguyen, M. T. , Li, J. , and Samali, B. , 2007, “ Bouc-Wen Model Parameter Identification for a MRF Damper Using Computationally-Efficient GA,” ISA Trans., 46(2), pp. 167–179. [CrossRef] [PubMed]
Zhou, J. , Wen, C. , and Li, T. , 2012, “ Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Hysteresis Nonlinearity,” IEEE Trans. Autom. Control, 57(10), pp. 2627–2633. [CrossRef]
Ha, Q. P. , Royel, S. , Li, J. , and Li, Y. , 2016, “ Hysteresis Modeling in Smart Structure MR Devices Using Describing Functions,” IEEE/ASME Trans. Mechatronics, 21(1), pp. 44–50.
Utkin, V. , Guldner, J. , and Shi, J. , 2009, Sliding Mode Control in Electro-Mechanical Systems, 2nd ed., CRC Press, Boca Raton, FL.
Celani, F. , 2006, “ A Luenberger-Style Observer for Robot Manipulators With Position Measurements,” 14th Mediterranean Conference on Control and Automation, Ancona, Italy, June 28–30, pp. 1–6.
Perez, T. , and Fossen, T. I. , 2009, “ A Matlab Tool for Parametric Identification of Radiation-Force Models of Ships and Offshore Structures,” Model. Identif. Control, 30(1), pp. 1–15. https://core.ac.uk/download/pdf/26752853.pdf

Figures

Grahic Jump Location
Fig. 1

Physical model of the container crane attached to an elastic base

Grahic Jump Location
Fig. 2

Control system diagram of the floating container crane

Grahic Jump Location
Fig. 3

Trolley motion: (a) utilizing the NFPD controller, (b) utilizing the SMPD controller, (c) utilizing the observer-integrated NFPD controller, and (d) utilizing the observer-integrated SMPD controller

Grahic Jump Location
Fig. 4

Hoist rotation: (a) utilizing the NFPD controller, (b) utilizing the SMPD controller, (c) utilizing the observer-integrated NFPD controller, and (d) utilizing the observer-integrated SMPD controller

Grahic Jump Location
Fig. 5

Container-lifting motion: (a) utilizing the NFPD controller, (b) utilizing the SMPD controller, (c) utilizing the observer-integrated NFPD controller, and (d) utilizing the observer-integrated SMPD controller

Grahic Jump Location
Fig. 6

Container swing: (a) utilizing the NFPD controller, (b) utilizing the SMPD controller, (c) utilizing the observer-integrated NFPD controller, and (d) utilizing the observer-integrated SMPD controller

Grahic Jump Location
Fig. 7

Axial oscillation of the container: (a) utilizing the NFPD controller, (b) utilizing the SMPD controller, (c) utilizing the observer-integrated NFPD controller, and (d) utilizing the observer-integrated SMPD controller

Grahic Jump Location
Fig. 8

Experimental results: (a) wave-stimulated base motion, (b) trolley motion, (c) payload swing, and (d) payload-lifting motion

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In