In this paper, a rank decreasing problem inherent to the application of a classical instrumental variable subspace identification (SIVID) approach will be discussed and an augmented identification approach will be proposed to address it. Simulations will demonstrate the validity of the proposed algorithm and its improved computational efficiency.

1.
Doherty
S. K.
,
Gomm
J. B.
and
Williams
D.
,
1997
. “
Experiment design considerations for non-linear system identification using neural networks
.”
Computers & Chemical Engineering
,
21
(
3
), pp.
327
346
.
2.
Gustafsson
T.
,
2001
. “
Subspace identification using instrumental variable techniques
.”
Automatica
,
37
, pp.
2005
2010
.
3.
Ljung
L.
and
McKelvey
T.
,
1996
. “
Subspace identification from closed loop data
.”
Signal Processing
,
52
, pp.
209
215
.
4.
Luo, D. and Leonessa, A., 2002. “Identification of MIMO Hammerstein systems with nonlinear feedback.” Proc. American Control Conf., pp. 3666–3671.
5.
Forssell, U. and Chou, C. T., 1998. “Efficiency of prediction error and instrumental variable methods for closedloop identification.” Proc. IEEE Conf. Dec. Contr., pp. 1287–1288.
6.
Stoica
P.
,
Cedervall
M.
and
Eriksson
A.
,
1995
. “
Combined instrumental variable and subspace fitting approach to parameter estimation of noisy input-output systems
.”
Signal Processing
,
43
(
10
), pp.
2386
2397
.
7.
Viberg
M.
,
Wahlberg
B.
and
Ottersten
B.
,
1997
. “
Analysis of state space system identification methods based on instrumental variables and subspace fitting:
.
Automatica
,
33
(
9
), pp.
1603
1616
.
8.
Overschee
P. V.
and
Moor
B. D.
,
1994
. “
N4SID: Subspace algorithms for the identification of combined deterministicstochastic systems
.”
Automatica
, Special Issue on Statistical Signal Processing and Control,
30
(
1
), pp.
75
93
.
9.
Overschee, P. V. and Moor, B. D., 1996. Subspace Identification for Linear Systems. Theory, Implementation, Applications. Kluwer Academic Press, Dordrecht.
10.
Overschee
P. V.
and
Moor
B. D.
,
1996
. “
Continuous-time frequency domain subspace system identification
.”
Signal Processing
,
52
, pp.
179
194
.
11.
Viberg
M.
,
Stoica
P.
and
Ottersten
B.
,
1995
. “
Array processing in correlated noise fields based on instrumental variables and subspace fitting
.”
Signal Processing
,
43
(
5
), pp.
1187
1199
.
12.
Stewart, G.W. and Sun, J., 1990. Matrix Perturbation Theory. Academic Press, Inc.
13.
Chou
C. T.
and
Verhaegen
M.
,
1997
. “
Subspace algorithms for the identification of multivariable dynamic errorin-variables models
.”
Automatica
,
33
(
10
), pp.
1857
1869
.
14.
Ljung, L., 1999. System Identification: Theory for the User (2nd Edition). Prentice Hall Ptr.
15.
So¨derstro¨m, T. and Stoica, P., 1989. System Identification. Prentice Hall Ptr.
16.
Lei, T.-G., Woo, C.-W., Liu, J.-Z. and Zhang, F., Williamsburg, VA, July 2003. “Schur complements of diagonally dominant matrices.” SIAM Conference on Applied Linear Algebra, pp. 1–6.
17.
Wang
J.
and
Qin
S. J.
,
2002
. “
A new subspace identification approach based on principal component analysis
.”
J. of Process Control
,
12
, pp.
841
855
.
This content is only available via PDF.
You do not currently have access to this content.