Induced Gas Flotation (IGF) vessel is used for water treatment of plant industries such as oil sand and chemical plants. An understanding of the interaction between the stator and rotor is essential for the design of IGF with consideration of geometric blade configuration is essential for the design of IGF. In this study, the effect of the number of stator blades on flotation performance was numerically investigated using the commercial code, ANSYS CFX ver. 16.1. The two-phase (water and air) flow characteristics in the forced-air mechanically stirred Dorr-Oliver flotation cell were considered. The flotation performance was evaluated on the basis of the correlations among the number of stator blades (8, 12, 16, 20, 24), power number and void fraction. By comparing the result of each case, the newly designed model with 12 stator blades which had the highest flotation performance was derived.

This content is only available via PDF.
You do not currently have access to this content.