RESEARCH PAPERS: Additional Technical Papers

Dynamics of Mechanisms and Machine Systems in Accelerating Reference Frames

[+] Author and Article Information
R. R. Allen

Hewlett-Packard, San Diego Division, San Diego, Calif. 92127

J. Dyn. Sys., Meas., Control 103(4), 395-403 (Dec 01, 1981) (9 pages) doi:10.1115/1.3139682 History: Received August 20, 1980; Online July 21, 2009


Matrix equations of motion are derived for a general machine system in an accelerating reference frame. These equations are highly-nonlinear in the displacements of inertial elements and describe the dynamics of large motions. This analysis permits study of dynamic interactions between the moving elements of a machine and the motion of the machine body. The latter may undergo general translation and rotation as a result of internal and external forces. Power-conserving transformations relating inertial, kinematic, and generalized velocities provide a highly formal procedure for kinematic and dynamic analyses and produce explicit equations in generalized variables which are efficient for numerical solution. The theory is applied to study a machine with a four-bar linkage and driveshaft elasticity mounted on a spring-damper suspension. In this example, torsional oscillations in the drive are compared to those obtained with the machine body fixed in inertial space.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In