Robust Adaptive Controllers for Interconnected Mechanical Systems: Influence of Types of Interconnections on Time-Invariant and Time-Varying Systems

[+] Author and Article Information
Sunil K. Singh, Lin Shi

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755-8000

J. Dyn. Sys., Meas., Control 116(3), 456-473 (Sep 01, 1994) (18 pages) doi:10.1115/1.2899241 History: Received June 28, 1993; Online March 17, 2008


We investigate robust adaptive controller designs for interconnected systems when no exact knowledge about the structure of the nonlinear interconnections between various subsystems is available. In this study, we concentrate on several different types of systems. We deal with both linear time-invariant (LTI) and linear time-varying (LTV) systems with nonlinear interconnections. For LTI systems, we examine the following types of interconnections: • interconnections that are bounded by first order polynomials in state space; • slowly time varying interconnections; • interconnections bounded by higher-order polynomials in state-space together with input channel interconnections. For LTV systems we deal with interconnections bounded by first-order polynomials in state space. We show that the nature of the nonlinear interactions influences the adaptation laws. We use the direct method of Lyapunov for the design of adaptive controllers for tracking in such systems. We investigate issues such as stability, transient performance and steady-state errors, and derive quantitative estimates and analytical bounds for various different adaptive controllers. For time-varying systems, we analyze the effect of the time variations of parameters and interactions and propose a modified adaptive control scheme with better performance. Simulation results are presented to validate our conclusions. We also investigate these results experimentally on a two-link robot manipulator. Experimental results validate theoretical conclusions and demonstrate the usefulness of such robust adaptive controllers for high-speed motions in uncertain systems.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In