Receding Horizon Stabilization of a Rigid Spacecraft With Two Actuators

[+] Author and Article Information
Nicolas Marchand, Mazen Alamir

Laboratoire d’Automatique de Grenoble (LAG), INPG-UJF-CNRS UMR 5528, ENSIEG BP 46, 38402 Saint Martin d’Hères Cedex, France

J. Dyn. Sys., Meas., Control 125(3), 489-491 (Sep 18, 2003) (3 pages) doi:10.1115/1.1591806 History: Received March 17, 1999; Revised October 17, 2002; Online September 18, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Aeyels,  D., and Szafranski,  M., 1988, “Comments on the stabilizability of the angular velocity of a rigid body,” Syst. Control Lett., 10(1), 35.
Byrnes,  C. I., and Isidori,  A., 1991, “On the attitude stabilization of rigid spacecraft,” Automatica, 27(1), 87.
Crouch,  P. E., 1984, “Spacecraft attitude control and stabilization,” IEEE Trans. Autom. Control, AC-29(4), 321.
Krishnan H., McClamroch H., and Reyhanoglu M., 1992, “On the attitude stabilization of a rigid spacecraft using two control torques,” in Proc. American Control Conference, pp. 1990–1995.
Morin,  P., and Samson,  C., 1997, “Time-varying exponential stabilization of a rigid spacecraft with two control torques,” IEEE Trans. Autom. Control, 42(4), 528.
Alamir,  M., and Marchand,  N., 1999, “Numerical stabilization of nonlinear systems—exact theory and approximate numerical implementation,” European J. Control, 5(1), 87.
Singh,  S. N., Steinberg,  M., and DiGirolamo,  R. D., 1995, “Nonlinear predictive control of feedback linearizable systems and flight control system design,” J. Guid. Control Dyn., 18(5), 1023.
Wen, J. T., Seereeram, S., and Bayard, D. S., 1997, “Nonlinear predictive control applied to spacecraft attitude control,” in Proc. American Control Conference, Vol. 3, pp. 1899–1903.
Hahn, W., 1967, Stability of motion, Springer Verlag, Berlin-Heidelberg.
Fliess,  M., Levine,  J., Martin,  Ph., and Rouchon,  P., 1995, “Flatness and defect of nonlinear systems: introductory theory and examples,” Int. J. Control, 61(6), 1327.
Dennis, J. E., and Schnabel R. B., 1983, Numerical method for unconstrained optimization and nonlinear equations, Chap. 10, Prentice Hall.
Sira-Ramirez,  H., and Siguerdidjane,  B., 1996, “A redundant dynamical sliding mode control scheme for an asymptotic space vehicle stabilization,” Int. J. Control, 65, 901.


Grahic Jump Location
Closed loop behavior of the rigid spacecraft with J1=2500 kg m2,J2=6500 kg m2,J3=8500 kg m2 (SPOT4, Sira-Ramirez and Siguerdidjane, 1996 12), prediction horizon tf=10 s with Nf=20 points, a sampling period T=0.5 s, a Chebyshev’s polynomial basis of dimension N+1=6 and initial condition (ω102030000)=(0,0,0,2π/3,π/3,0). The perturbed case is with 10% error on a simulating a momentum error and 5° of permanent offset on θ simulating a captor error.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In